Ex Reference Manual
Version 1.1 — November, 1977

William N. Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Ex is a UNIX text editor, based on and largely compatible with the standard UNIX
editor ed. Exis a line oriented editor and has a command mode similar to ed. Ex also has
an open mode which allows intraline editing on video terminals, and a visual mode for
screen oriented editing on cursor-addressible terminals such as the LSI ADM-3A and HP
2645. Ex gives a great deal of feedback to the user prompting for command input, indicat-
ing the scope of changes performed by commands, and giving diagnostics for all error
conditions. For more experienced users, ex can be made more terse. The ex user is pro-
tected against accidental loss of work by the undo command, which can reverse the effect
of the last buffer modifying command, and by sensibility restrictions on the write com-
mand, which prevent loss of the current file and the accidental overwriting of other files.
Ex has a recovery mechanism which allows work to be saved to within a few lines of
changes after system or editor crashes.

The Reference Manual provides a concise description of all features of ex, summa-
rizing commands, command variants, options and open and visual modes.

17 January 2004

Ex Reference Manual
Version 1.1 — November, 1977

William N. Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

Introduction
The reference manual summarizes, in a concise form, the features of the text editor ex.

History of the editor

Ex is heavily based on the text editor ed. The fi rst versions of ex were modifi cations of a text editor
em developed at Queen Mary’s College in England. Em was a modifi ed ed which had some added features
which were useful on high-speed terminals. The earlier versions of ex also included features from the mod-
ified ed in use at ucLA, and the ideas of the present author and Charles Haley, who implemented most of
the modifi cations to em which resulted in these early versions of ex. Versions of ex have been in use since
September, 1976. Version 1.1 of ex results from a redesign of ex implemented by the present author in the
summer and fall of 1977.

Acknowledgements

The author would like to thank Chuck Haley, who collaborated on the earlier versions of ex and acted
as mentor for the design of this version; Bruce Englar, who stimulated the redesign of ex and convinced the
author of the worth of the intraline editing facilities; and his faculty advisor Susan L. Graham. In addition,
alarge number of people have contributed ideas to the devel opment of ex, aided in its debugging and in the
preparation of documentation. The author would like to thank Eric Allman, Ricki Blau, Rich Blomseth,
Clint Gilliam, Steve Glanville, Ed Gould, Mike Harrison, James Joyce, Howard Katseff, Ivan Maltz, Doug
Merritt, David Mosher, Dick Peters, Bill Rowan, Genji Schmeder, Eric Schmidt, Jeff Schriebman, Kurt
Shoens, Bob Tidd, Bob Toxen, Mike Ubell, and Vance Vaughan.

Options
Each instance of the editor has a set of options, which can be set to tailor it to your liking. The com-

mand edit invokes a version of ex designed for more casual or beginning users by changing the default set-
tings of some of these options.

There are three kinds of options: Boolean, numeric, and string options. Options are controlled by the
set command which can be used to show their current values or to assign new values. The options, their
defaults, and a short description of each are given in the following table. A more complete description of
each option will be given near the end of this reference manual.

Editor options

Name Abbr | Default Description
autoindent ai noai Automatic indentation
autoprint ap ap Automatic print after change
beautify - nobeautify Discard most non-graphic characters
directory dir dir=/tmp Directory for editor buffer file
editany ea noea Allow editing of any file
edited - - Current file is edited
errorbells eb eb Ring terminal bell on errors
fork - fork Allow shell escape without write
home - home=homedir’ | Home directory
hush - nohush Inhibit all feedback
ignorecase ic noic Ignore upper/lower case in matching
indicateul iu noiu Indicate underlining on CRT’s
list - nolist Print lines (more) unambiguously
magic - magic¢ More magic characters in regular expressions
de - mode=644* Default create mode for files
notify - notify:5¢ Feedback threshold on changes
number - nonumber Number all (input and output) lines
open - operft Allow open and visual commands
optimize - optimize Enhance throughput (but lose some typeahead)
printall pa printall Print all characters
prompt - prompt Prompt for input
scroll - scroll=12 Number of logical lines in a scroll
shell sh sh=/bin/sh Shell for UNIX escape
shiftwidth sw sw=8 Shift width (tab stop for autoindent)
sticky - nosticky Post command flags stick around
terse - noterse Shorter error diagnostics
ttytype tty tty:unknownT Terminal type
visualmessage | vm novm Interconsole message inhibition during visual
window - window=23 Window size for zcommand
wrap - wrap Context addressing searches go past top/bottom
t User-dependent (from htmp data base)
1 Nomagic, notify=1, noopen if invoked as edit
* Always set and given in octal

Initialization

When it is first invoked, ex will use the home directory data base htmp to set the home directory
option and to set the ttytype option, reflecting the kind of terminal in use. If there is a file .exrc in the user’s
home directory, then ex will source to that file. Options setting commands placed there will thus be
executed before each editor session.

Entering the editor
Ex is entered by a command of the form

ex[-][-o][-n][-p]l[[-r]name..]

Brackets here indicate optional arguments. The — option suppresses all interactive-user feedback and is
useful in processing editor scripts in command files. The —p option suppresses the prompt. The —n option
is implied by the — option and causes the editor to do no .exrc or terminal-type dependent start-up process-
ing. The —o0 option causes ex to set the terminal type dependent options based on the characteristics of the
diagnostic output if the standard output is not a terminal. Finally, the —r option is used in recovering after
an editor or system crash. See the section on crash recovery below.

File manipulation

Ex is normally editing the contents of a single file, whose name is recorded in the current file name.
Ex performs all editing actions in a buffer (actually a temporary file) into which the text of the file is ini-
tially read. Changes made to the buffer have no effect on the file being edited unless and until the buffer
contents are written out to the file with a write command. After the buffer contents are written, the previous
contents of the written file are no longer accessible.

A file argument on the command line causes that file to be initially edited. Its name becomes the cur-
rent file name, and its contents are read into the buffer.

Edited file notion

Most of the time the current file is considered to be edited. This means that the contents of the buffer
are logically connected with the current file name, so that writing the current buffer contents onto that file,
even if it exists, is a reasonable action. If the current file is not edited then ex will not normally write on it
if it already exists. This protects the user against accidental destruction of files. In all normal editing pat-
terns, the current file is considered edited.

Alternate file

Each time a new value is given to the current file, the previous current file is saved as the alternate
file. Similarly if a file is mentioned but does not become the current file, it is saved as the alternate file.
The character *** substitutes for the alternate file in forming new filenames. This makes it easy to deal
alternately with two files and eliminates the need for retyping the name supplied on an edit command after
a “No write since last change™ diagnostic is received.

Filename formation

Filenames within the editor may be specified using the normal UNIX expansion conventions: ‘O
matches any sequence of characters in a file name, “?” matches any single character, and ‘[class]’ matches
the set of characters in the class, with single characters specifying themselves, and ranges of the form ‘a-z’
permitted, this example matching all letters.’

In addition to these metacharacters, the character ‘%’ in filenames is replaced by the current file
name and the character *** by the alternate file name. If it is necessary for one of the characters “*’, “?” ‘[’
‘%’, 7 or ‘\’ to appear in a filename, it may be escaped by preceding it with a ‘\’.

t Note that an initial character “’ in a filename must always be specified explicitly, as must all ‘/’s in path
names.

Multiple files

If more than one fi le is given on the command line, then the fi rst fi le is edited as described above.
The remaining arguments are placed with the fi rst fi le in the argument list. The current argument list may
be displayed with the args command. The next fi le in the argument list may be edited with the next com-
mand. The argument list may also be respecifi ed by specifying alist of names to the next command. These
names are expanded, the resulting list of names becomes the new argument list, and ex edits the fi rst fi le on
thelist.

Errors

When errors occur ex normally rings the terminal bell and prints an error diagnostic. If the primary
input isfrom afi le, editor processing will terminate.

Interrupts

If ex receives an interrupt signal (ASCII DEL) it prints *“Interrupt” and returnsto its command level. If
the primary input isafi le, then ex will exit when this occurs.

Hangups

If a hangup signal is received and the buffer has been modifi ed since it was last written out ex
attempts a preserve command. If this command fails then ex will not unlink the editor buffer in the direc-
tory where it was being kept. In either case arecover command can be used to continue the work where it
[eft Off.

Crash recovery

If the editor or system crashes, or if the phone is hung up accidentally, then you should be able to
recover the work you were doing, to within afew (maximum of 15) lines of changes of the place where you
were. To recover afi le you can use the recover command, or the —r option, asin

€X —r resume

if you were editing the fi le resume. In order to recover you must have had a current fi le name when the
crash occurred, and respecify this name. After recovering the fi le you should check that it is indeed ok
before writing it over its previous contents. If an error occurs during the recovery operation this means that

the buffer was not in a consistent state at the time of the crash and that you will not be able to recover in

this way.

Modes

Ex has fi ve distinct modes. The primary mode is command mode. Commands are entered in com-
mand mode when a‘:’ prompt is present, and are executed each time a complete line is sent. In text input
mode ex gathers input lines and places them in the fi le. The append, insert, and change commands use text
input mode. No prompt is printed when you are in text input mode. This mode is left by typing a“. alone
at the beginning of aline, or by typing an end-of-fi le (CTRL(D) at the beginning of aline.)

The last three related modes are open and visual modes, entered by the commands of the same name,
and, within open and visual, text insertion mode. Open and visual mode allow local editing operations to
be performed on the text of aline. Open deals with one line at a time on soft-copy terminals while visual
works on (unintelligent) soft-copy terminals with full-screen addressible cursors. Visual uses the entire
screen as a (single) window for fi le editing changes.

Command structure

Most commands have alphabetic hames, and initial prefixes of the names are accepted. The ambigu-
ity of short names is resolved in favor of the more commonly used commands, always those of the editor
ed. Thus the command print can be abbreviated ‘p’ while the shortest available abbreviation for the pre-
serve command is ‘pre’.

Most commands accept prefix addresses specifying the lines in the file upon which they are to have
effect. The forms of these addresses will be discussed below. A number of commands also may take a
trailing count specifying the number of lines to be involved in the command. Thus the command “10p’ will
print the tenth line in the buffer while ‘delete 5° will delete five lines from the buffer, starting with the cur-
rent line.

Some commands take other information or parameters, this information always being given after the
command name. Examples would be option names in a set command i.e. ‘set number’, a file name in an
edit command, a regular expression in a substitute command, or a target address for a copy command, i.e.
‘1,5 copy 25°.

Feedback

Most commands which change the contents of the editor buffer give feedback if the scope of the
change exceeds a threshold given by the notify option.T This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with an undo. Thus if a delete command elimi-
nates 100 lines you will be informed by a message of the form ““100 lines deleted.” Similarly, after com-
mands with more global effect such as global or visual, you will be informed if the net change in the num-
ber of lines in the buffer during this command exceeds this threshold.

Command variants

A number of commands have two distinct variants. The variant form of the command is invoked by
placing an ‘I’ character after the command name. Some of the default variants may be controlled by
options; in this case, the ‘I’ serves to toggle the default. Useful variants are ‘quit I’ which suppresses
warnings about the buffer not having been written out, and ‘write !’ which allows overwriting of an exist-
ing file which is not the edited file.

Command flags

The characters ‘#” and *:’, and the letters ‘p” and ‘I’ may be placed after many commands in any
combination. In this case, the command abbreviated by these characters is executed after the command
completes. Any number of ‘+’ or ‘=’ characters may also be given with the option flags. If they appear, the
specified offset is applied to the current line value before the printing command is executed. The option
autoprint makes most trailing ‘p’ characters supplied by ed users superfluous; as autoprint is suppressed
during global commands, these flags are still often necessary.

Multiple commands on a line

More than one command may be placed on a line by separating each pair of commands by a |’ char-
acter. However the global commands, and the shell escape ‘!” must be the last command on a line, as they
are not terminated by a ‘|’. Thus the command form ‘write | next’, which can be abbreviated ‘w|n’, will
write the current file and then edit the next file in the argument list.

t Current notable exceptions are tabulate, expand, and the shift commands ‘<’ and “>’.

Command addressing

As previously mentioned, many commands accept address specifications before the command itself
is given. These consist of a series of addressing primitives, described below, separated by *;” or “;”. Such
address lists are evaluated left-to-right. When addresses are separated by *;’ the current line *.” is set to the
value of the previous addressing expression before the next address is interpreted. If more addresses are
given than the command requires, then all but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer. Null address specifications are
permitted in a list of addresses, the default in this case is the current line “.’; thus “,$’ is equivalent to “.,$’.

Itis an error to give a prefix address to a command which expects none.

A simple example of command addressing is the command “1,$print’ which prints all the lines in the
buffer, the first ‘1’ to the last ‘$’. The command /" Thesis/;/Example’ will search forward to the first line
beginning with the string ‘Thesis’, set the current line to be this line, and then search forward from this line
for the string ‘Example’. If such a line is found, it is printed.

Addressing primitives

Current and last lines. The current line is refered to symbolically by *.’, the last line by ‘$’. The
default address for most commands is the current line, thus “.” is rarely used alone as an address. Most
commands leave the current line as the last line which they affect.

Line numbers. The lines in the editing buffer are numbered sequentially from 1; the last line in the
buffer may be referred symbolically to as ‘$’. The most primitive form of addressing refers to lines by their
line numbers in the file. Some commands also allow reference to a hypothetical line 0. These commands
operate before the first line of the buffer. Thus ‘0 read header’ places a copy of the contents of the file
header before the first buffer line.

Relative addresses. Addresses may also be specified relative to the current buffer line. Thus ‘-5’
refers to the fifth line preceding the current line while *+5’ refers to the fifth line after it. Similarly a single
‘=’ addresses the line before the current line while ‘++” addresses the second following line. Note that the
forms “.+2°, “+2” and ‘++’ are all equivalent; if the current line is line 100 they all address line 102.

Context searching. One of the most convenient ways of addressing the lines in the buffer is via
*““content addressing” or *““context searching.” Here we pick out a pattern in the line we wish to refer to and
specify that pattern after the search delimiter ‘/° to search forwards or ‘?” to search backwards. If we are
simply looking for this pattern, then this is all we need to do; ‘/Thesis’ will search forward in the file and
then print the first line, if any, containing the string ‘Thesis’. If we wish to give a command to be executed
at this line we must close off the search string with a matching delimiter. Thus the command ‘/The-
sis/delete’ will delete the next line containing the string ‘Thesis’. The pattern here may actually be a regu-
lar expression. This allows, e.g. searching for a string at the beginning or end of a line. It is possible to
search again for the same pattern by giving a null regular expression; that is either a form such as ‘//’, or a
single ‘/’ or *?” immediately followed by a newline character. Context searches normally wrap around past
the end of the file if necessary to continue the search.’

Marks. The final way of specifying a line in the buffer is with a mark. The mark command may be
used to give a line a mark, which is denoted by a single lower case letter. Thus ‘mark a’ will mark the cur-
rent line with tag a. This line may be subsequently referred to in addressing as “"a’.

Previous context mark. One mark is automatically set by the editor. This is the previous context
mark, referred to in addressing expressions via “""”. Before each non-relative motion of the current line *.’,
the previous current line is marked with this special tag.:E

t It is also possible to use the previous scanning or substitute regular expression for the scan; the forms are ‘\/”
and ‘\&/” to scan forwards, ‘\?” and ‘\&?’ to scan backwards respectively.

1 This makes it easy to refer or return to this previous context. Thus if you specify a context search which leads
you to a line other than you intended, you may return to the previous current line via *""".

Command summary
Summarizing the discussion above, the general form of an ex command is:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next linein thefi le.

The following table summarizes ex command formats and the shortest allowable abbreviations for
commands. Except as noted, all commands which take addresses assume the current line as default if no
addresses are given. Each command will be discussed in more detail in the next section.

Command summary

Prototype Abbr. | Description

append ! a Append text after addressed lines
args! ar Print argument list

cd dir cd Synonym for chdir

change ! c Change text of specifi ed lines
chdir dir chd Change working directory

copy addr co Make a copy of specifi ed lines after addr
delete count d Delete specifi ed lines

echo text ec Echo text to output

edit file ed Synonym for ex

ex file e Edit specifi ed fi le

expand count exp Expand tabs to spaces

file file f Display/change current fi le

global /pat/ cmds & g Execute cmds on lines matching pat
help topic h Provide information on topic

insert ! i Insert text before addressed line
join ! count] Join lines together

k x k Synonym for mark

list count | Print lines more unambiguously
mark x ma Mark addressed line with letter x
move addr m Move specifi ed lines after addr
next ! n Edit next fi le in argument list

next ! filelist n Respecify argument list; edit fi rst fi le
open /pat/ 0 Intraline edit of specifi ed line
preserve pre Save buffer when disaster strikes
print count p Print addressed lines

put pu Restore lines

quit ! q Terminate editor session

read file r Read file into buffer after current line
recover file rec Recover editing buffer after disaster
reset res Restore option default values
rewind rew Rewind argument list; edit fi rst fi le
set params se Set/interrogate options

shell sh Invoke another, interactive, shell
source file o) Read editor commands from file
substitute/pat /repl / flags count Tl su Substitute repl for pat

sync sy Synchronize the temporary fi le
tabulate count ta Convert (leading) blanksto tabs
transcribe addr t Synonym for copy

undo ! u Reverse effect of last command

vl v Synonym for *‘global! ’ variant
version ve Print current version information

visual type vi Enter visual mode

Command summary

Prototype Abbr. | Description

write ! file* w Write specifi ed linesto fi le

write ! >> fi le* w Write addressed lines at end of fi le

xpand count X Synonym for expand

yank count ya Defi nelinesto be put

z type count z Context display

! command - Send command to a shell

= - Show line number in buffer

> count - Right shift

< count - L eft shift

EOF - Scroll (EOF is generated by CTRL(D))

CR OF NL - Null command prints addressed (next) line

count - Synonym for number

: count - Print inhibiting list and number options.

& flags count - Repeat last substitute command

~ flags count - Substitute last repl for last pattern

| - Multiple command per line separator
TPat may be delimited by other characters; ‘\/' and ‘\&/’ are aso permitted as in address formation, and with
these formsrepl isterminated by ‘/* in a substitute.
fDefault addressis entire buffer (last line for ‘=").

Command variants

A number of command have variants, introduced by following the command name with a‘!". These

variants are summarized in the following table.

Command variants
Variant Description
append ! Toggle autoindent during append
args ! Print all arguments, not just those remaining
change ! count Like append!
ex!file Suppress ‘‘No write” complaint before executing
edit! file Like ex!
global ! /pat/ cmds Execute cmds on lines not matching pat
insert ! Like append!
join'! count Join lines without massaging blank space
next ! Like ex!
quit ! Suppress ‘“‘Morefi les” and *“No write”” complaints
tabulate ! count Convert al blanks to tabs, not just initial
undo ! No error if ‘““Nothing to undo’” or **No change”
write ! fi le Suppress write checks (i.e. overwritefi le)
write ! >>file Likewrite! (fi le can be non-existent)

Command descriptions

In the following command descriptions, the default addresses are shown in parentheses, which are
not, however, part of the command. The variant fegs !, counts and flags are always optional.

(.) append!
text

The append command reads the input text and places it after the specifi ed line. After the command,
‘.’ addressesthe last line input or the specifi ed lineif no lineswereinput. If address*'0’ is given, text
is placed at the beginning of the buffer. The variant flag toggles the setting for autoindent during the

input of text.

args!
The members of the argument list are given starting with the current one or, if the variant is given,
starting with the beginning of the argument list.

cd directory
The cd command is a synonym for chdir.

(.,.)change! count
text

The change command replaces the specifi ed lines with the input text. The current line becomes the
last line input; if no lines were input it is left as for a delete. The variant toggles autoindent asin a
append.

chdir directory
The specifi ed directory becomes the current directory. If no directory is specifi ed, the current value
of the home option is used as the target directory. After a chdir the current fi le is not considered to
have been edited so that write restrictions on pre-existing fi les apply.

(.,.)copy addr flags
A copy of the specifi ed lines is placed after addr, which may be ‘0’. The current line*.’ addresses
thelast line of the copy. The command transcribe, ‘t’, isa synonym for copy.

(.,.)delete count fegs
The delete command removes the specifi ed lines from the buffer. The line after the last line deleted
becomes the current line; if the lines deleted were originally at the end, the new last line becomes the
current line.

echo text
Text is echoed onto the standard output up to a ‘| or newline character. These (and any) characters
may be included in text by preceding them with a‘\’. Initial blanks are stripped from text.

edit ! fi lename

ex ! fi lename
The edit command is used to begin an editing session on a new fi le and is composed of severa dis-
tinct actions. Edit fi rst checks to see if the buffer has been modifi ed since the last write command
was issued. If it hasbeen, awarning isissued and the edit command is never begun. In this case, the
user has a second and last chance to write out the buffer. If another edit (or next or quit) command is
executed without a write and before any further modifi cations to the buffer, the editing changes to the
buffer will belost. Thisentire warning procedure is suppressed if the variant flag is given.

The edit command next deletes the entire contents of the editor buffer making the named fi le the cur-
rent fi le and printing its name. After insuring that this fi le is sensible, i.e. that it is not a binary fi le
such as a directory, a block or character special fi le other than /dev/tty, a terminal, or a binary or
executable fi le (asindicated by the fi rst word), ex reads the fi le into the editor buffer.

If the read of the fi le completes without error, the number of lines and characters read is typed. If
there were any dirty (non-Ascii) characters in the fi le they are stripped of their non-Ascii high bits,
and any null characters in the fi le are discarded. If none of these errors occurred, the fi le is consid-
ered edited. If the last line of the input file is missing the trailing newline character, it will be

supplied and a complaint will be issued. This command leaves the current line “.” at the last line
read.

(.,.)expand! count flags
The expand command processes the text of the specified lines, converting tabs to an appropriate num-
ber of spaces. The current line is left at the last line which had a tab expanded.

file
The current filename is displayed along with an indication of whether it is considered ‘[Edited]’,
whether it has been ‘[Modified]’ since the last write command, and the number of lines in the buffer.

fi lefi lename
The current file is changed to fi lename which is not considered edited.

(1,%)global ! /pat/ cds
The global command first marks each line among those specified which matches the given regular
expression. Then the given command list is executed with “.” initially set to each marked line. In the
variant form the list is executed at each line not matching the given regular expression.

The command list consists of the remaining commands on the current input line and may continue to
multiple lines by ending all but the last such line with a ‘\’. Append, insert, and change commands
and associated input are permitted; the “.” terminating input may be omitted if it would be on the last
line of the command list. Open and visual commands are permitted in the command list and take
input from the terminal.

The global command itself may not appear in cmds. The undo command is also not permitted there,
as undo instead can be used to reverse the entire global command. The options autoprint and autoin-
dent are inhibited during a global, and the value of the notify option is temporarily infinite, in defer-
ence to a notify for the entire global. Finally, the context mark “~ ~ ” is set to the value of ‘.” before the
global command begins and is not changed during a global command, except perhaps by an open or
visual within the global.

help topic
The help command accepts keywords related to the editor and, if there is information in its data base
about that topic supplies the information. A list of topics can be had by help index. The data files for
help are kept in the directory /usr/lib/how_ex.

(.)insert!
text

The insert command places the given text before the specified line. The current line is left at the last
line input; if there were none input it is left at the line before the addressed line. This command dif-
fers from append only in the placement of text. The variant toggles autoindent during the insert.

(.,.+1)join! count flags
The join command places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character. If there is already white space at the
end of the line, then the white space at the start of the next line will be discarded. The variant causes
a simpler join with no white space processing.

() kx
The k command is a synonym for mark.

(.,.) list count flags
The list command prints the specified lines in a more unambiguous way; non-graphic characters are
escaped in octal, tabs and backspaces are printed as > and < with the overstruck ‘=’ being omitted if
the terminal can not overstrike. The end of each line is marked with a trailing “$’. The current line is
left at the last line printed.

(.) mark x
The mark command gives the specifi ed line mark x, a single lower case letter. (The x must be pre-
ceded by a blank or atab.) Subsequently, the addressing form *~ x’ addresses this line. The current
lineis not affected by this command.

(.,.)moveaddr
The move command repositions the specifi ed lines after addr. The fi rst of the moved lines becomes
the current line.

next !
The next fi le from the command line argument list is edited. The variant suppresses ‘“No write since
last change’” warnings before performing the next as for the edit command.

next ! filelist
The specifi ed fi lelist is expanded and the resulting list replaces the current argument list; the fi rst fi le
in the new list isthen edited.

(.,.)number count flags
The number command prints each specifi ed line preceded by its buffer line number. The current line
isleft at the last line printed.

(.) open fags

(.) open /pat/ fags
The open command enters intraline editing mode at each addressed line. If pat is Tgiven, then the cur-
sor will be placed initially at the beginning of the string matched by the pattern.’ Further lines con-
taining pat may be opened using the next ‘n’ operation without leaving open. The current line is left
at the last line opened. See the open and visual mode description below for more details.

preserve
The current editor buffer is saved as though the editor had just crashed. This command is for use
only in emergencies when awrite command has resulted in an error and you don’t know how to save
your work. After apreserve you should seek help immediately.

(.,.)print count flags
The print command prints the specifi ed lines with non-printing characters normally escaped as ‘?'.
The current lineisleft at the last line printed.

(.)put
The lines removed from the editing buffer by the last command which had the ability to change the
buffer are restored after the addressed line. Put can be used, e.g., after a change command to retrieve
the lines changed away when you decide that you want both these and the lines you replaced them
with. A delete command and a put command effect a move. Note that put is very similar to its open
and visual mode counterpart.

quit !
The quit command causes ex to exit. No automatic write of the editor buffer to afi le is performed.
However, ex issues a warning message if the fi le has changed since the last write command was
issued and it offers a second chance to write. Ex will aso complain if there are more fi les in the
argument list. The variant form suppresses these complaints.

(.) read fi lename
The read command places a copy of the text of the given fi le in the editing buffer after the specifi ed
line. If no filename is given the current fi le name is used. The current fi le name is not changed
unless there is none in which case fi lename becomes the current name. The sensibility restrictions for
the edit command apply here also. If the fi le buffer is empty and there is no current name then ex
treats this as an edit command.

Address ‘0’ is legal for this command and causes the fi le to be read at the beginning of the buffer.
Statistics are given as for the edit command when the read successfully terminates. After aread the
current lineisthe last line read.

TThe pat may be delimited only by ‘/" characters; theforms V' and ‘\&/" are also not allowed here.

recover fi le

reset

The command recover may be used to retrieve the contents of the editor buffer after a system crash,
editor crash, or a preserve command. A recover also occurs implicitly when the —r option is speci-
fi ed on the command line. A fi le name should be given to recover unless the fi le of the current name
is to be recovered. Thus a name is always required on the command line. A recover results in the
removal of the saved buffer. The recovered buffer contents should be checked for sensibility and then
saved. Itisnot possible to recover from errors occurring during a recover.

The reset command restores the default settings of all numeric and Boolean valued options.

set parameter

shell

The set command may be used to interrogate and to give new values to options. With no argumentsit
prints those options whose values have been changed from their defaults; with parameter all it prints
all of the option values

By giving an option name followed by a*? the current value of a single option may be interrogated.
The *? is unnecessary unless the option is Boolean valued. Boolean options are given values either
by the form ‘set option’ to set them on or ‘set nooption’ to set them off; string and numeric options
are assigned viathe form ‘set option=value’. More than one parameter may be given to set; they are
interpreted |eft-to-right.

It is also possible to interrogate the current values of the current and alternate fi le names, and the pre-
vious UNIX shell escape command by supplying the parameter ‘%', ‘™ ', or ‘!" respectively.

A new shell is created. This shell is interactive, like a login shell. When it terminates, editing
resumes.

source fi le

The source command causes ex to read commands from the specifi ed fi le. Source commands may be
nested.

(.,.) substitute /pat/repl / options count fegs

sync

On each specifi ed line, the fi rst instance of pattern pat is replaced by replacement pattern repl. If the
global indicator option character ‘g’ appears, then al instances are substituted; if the confi rmindica
tion character ‘¢’ appears, then before each substitution the line to be substituted is typed with the

string to be substituted marked with ‘1’ characters. By typing an 'y’ one can cause the substitution

to be performed, otherwise no change takes place. After a substitute the current line is the last line

substituted.

See the regular expression description for an explanation of metasequences availableinrepl. In addi-
tion to these sequences, lines may be split by substituting new-line charactersinto them. The newline
in repl must be escaped by preceding it with a*\'. (If the substitute is within a global, then two
escaping ‘\’ characters will be needed.)

The sync command causes the contents of the editor temporary fi le to be synchronized to reflect the
current state of editing. Sync commands are done automatically whenever there is a difference of 15
lines or more between the in-core buffer and the temporary. They are as useful as write commands,
and much faster, for those who are worried about losing work due to an editor or system crash.

(.,.)tabulate ! count flags

The tabulate command causes |eading white space to be converted to tabs on the specifi ed lines. The
variant causes this tabulation to occur throughout each line. The current line is left at the last line
where a change occurred.

(.,.)transcribe addr
The transcribe command is a synonym for copy.

undo'!

The undo command reverses the changes made in the buffer by the last buffer editing command.
Note that global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the unix file system cannot be
undone. Undo is its own inverse. After an undo the current line is the first line restored or the line
before the first line deleted if no lines were restored. For commands with more global effect, such as
global and visual the current line regains it pre-command value after an undo. Undo always marks
the previous value of the current line *.” as “~ 7’

(1,9%)v/pat/cmds
The v command is a synonym for the global command variant ‘global!”.

version
The version command prints the current version number of the editor as well as the date the binary
was created.

(.) visual type fags
The visual command enters visual mode at the specified line. Type is optional and may be ‘+’, ‘=",
‘17 (*7) or “.” asin the zcommand to specify the placement of the specified line on the screen. By
default, if type is omitted, the specified line is placed as the first on the screen. After a visual, the
current line is the last line the cursor was on when it ended. See the section describing visual and
open for more details.

(1,%)write!file

(1,%)write! >>file
The write command places data from the file buffer back into the file system. The first form of the
command will write to a file only if it is the current file and is edited, if the file does not exist, or if
the file is actually a teletype, /dev/tty or /dev/null. If the file does not exist it is created. The current
file name is changed only if there is no current file name. The current line is unchanged by this com-
mand, and feedback is given as to the number of lines and characters written as for the edit com-
mand. The second form is used to write the buffer contents at the end of an existing file. For both
forms, the variant suppresses the file existence and type checks.

If an error occurs while writing the current and edited file, ex considers that there has been ““No write
since last change” even if the buffer had not previously been modified.

(.,.)xpand count flags
The xpand command is a synonym for expand.

(.,.)yank count
The yank command causes the contents of the addressed lines to define the text to be placed in the
buffer by a succeeding put command. The addressed lines are not affected. A yank and a put can be
used instead of a copy command.

(.) ztype count
The zcommand gives access to windows of text. The default number of logical lines in a window is
given by the numeric window option or may be given explicitly by the count after the command. The
various types and their meanings are:

. window around the current line
- window ending at the current line

+ window starting after the current line
omitted window starting at the current line
tor” window before this window

In addition, the form z= displays a window of text with the current line in the center delimited by
lines of ‘=’ characters. For all commands forms except z= the current line is left at the last line
printed; for z= “.” addresses the bracketed line.

7~y

The characters “+’, and ‘=’ may be repeated for cumulative effect. On a CRT the screen is cleared
before display begins unless a count which is less than the screen size is given.

lcommand

($)=

The remainder of the line after the “!” character is sent to a shell to be executed. The current line is
unchanged by this command. Within the text of command the characters ‘%’ and ‘™’ are expanded as
in filenames and the character ‘!’ is replaced with the text of the previous command. Thus, in partic-
ular, “I'” repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed.

If there has been ““No write” of the buffer contents since the last change to the editing buffer, then a
diagnostic will be produced before the command is executed as a warning. A single ‘!’ is printed
when the command completes.

The ‘=" command prints the line number of the addressed line. The current line is unchanged.

(.,.)>count flgs
(.,.)<countfhags

The >’ right shift and ‘<’ left shift commands perform intelligent shifting on the specified lines. The
quantity of shift is determined by the shiftwidth option and the repetition of the specification charac-
ter. Thus “>>" causes the current line to be right shifted two tab stops. Only white space is shifted;
no non-white space characters are discarded in a left-shift.” The current line becomes the last line
which changed due to the shifting.

EOF
If ex receives an end-of-file (control-d) from a terminal input, it interprets this as being a request for a
scroll through the file and sends the next scroll logical lines of text, normally a half window.
(+1)NL
(+1)]

An address alone causes the addressed line to be printed. A blank line alone is thus useful for step-
ping through text.

(.,.):countfags

The colon command is used to override the options number and list so as to print a line without these
features while the options remain set.

(.,.) & options count flags

The ‘&’ command repeats the previous substitute command.

(.,.)" options count flags

The <™ command replaces the previous regular expression with the previous replacement pattern
from a substitution.

t White space characters are blank and tab.

Visual and open modes

Ex has two modes, visual and open, which are quite different from command mode. In command
mode, one prepares command lines which are then executed as they are sent to the editor. The editor main-
tains only a notion of a current line in command mode, not of a current position within that line.

In open and visual modes, there is both a current line and a current position within that line. The cur-
sor appears on the current line, and indicates the current position within that line by its position. One then
forms operations consisting of one or more operation characters which are immediately acted upon by the
editor. Most operation characters do not show on the screen, rather their effect on the contents of the buffer
is shown. Operation sequences do not form “lines of input, and do not need to be terminated by a new-
line character.

Operations. Becoming proficient at using open or visual thus requires learning a set of operations
which you can use to modify the text of your file. There are a large number of operations. They are associ-
ated with keys so as to suggest their function. Related functions are often performed by the upper case
counterpart of a lower case operation. Thus the “f* find operation moves the cursor to the following speci-
fied character in the forward direction within the line, while ‘F’ performs the same function in the backward
direction. Similarly, ‘r’ replaces the character under the cursor with the single following character, while
‘R’ replaces successive text line characters with the input characters up to a terminating Esc. It is not nec-
essary to learn all or nearly all of the available operations in open and visual. As you become more profi-
cient with open and visual you may find use for more of them.

Intraline operations. There are two major kinds of operations in visual and open — those dealing
with the characters of a single line, and those dealing with the lines themselves. The intraline operations
deal with the text of a single line. The editor has facilities for referring to the line in terms of a number of
characters, a column position, a number of “‘words”, a target character, the beginning of the line, the first
non-blank character on the line, the end of the line, etc. In addition these operations will take counts
repeating their effect whenever appropriate. Thus the word move operation ‘w’ will advance the cursor to
the beginning of the next word in the current input line, while the operation ‘3w’ will advance three words.

Interline operations. Interline operations allow the introduction of new lines, the movement of
lines, making copies of existing lines, joining together text from several lines to form one new line, substi-
tution of new lines for old, and the deletion of lines. Most of these operations ignore the cursor position
within the current line. It is also possible to introduce new lines into the file by inserting text within a line
and including a new-line character in this text. This has the effect of *“splitting” the line into two new lines.

Open mode display. In open mode, the text of the current line is displayed with the cursor initially
at the first non-blank position of the line. If a regular expression is given following the open command then
the first character which matched this expression is the character under the cursor. The single displayed
logical line usually occupies one physical line on the screen but may, on a cursor-addressible terminal,
occupy several lines.

Visual mode display. In visual mode, a number of logical lines are placed on the screen, with long
lines folded to occupy several physical lines. The cursor may be moved between these lines and each can
be edited as with open. In addition, the interline operations listed above may be conveniently performed in
visual mode.

Empty lines. Physical lines in the display which are not occupied by any portion of logical lines are
represented by the character ‘@’ alone at the beginning of the line. Physical lines past the end of file are
displayed using the character * instead of ‘@’.

Cleaning up the screen. If you have made a number of line changes, creating empty physical lines
displayed as ‘@’, you may wish to maximize the information on the screen. You can do this with the
CTRL(Z) operation.

Operation errors. If an operation formation or execution error occurs the terminal bell is rung and
any partially formed command is discarded. The bell is also rung when a DELETE is used to cancel an

t On cursor addressible terminals, the second to the last line is used instead of the last line. This avoids screen
roll-up problems often associated with the last column of the last line. On terminals without cursor-addressing
capability, an error will occur if the line is too long to fit on one physical screen line.

operation and when an ESC is sent when no operation isin progress.

Escape. The ESC escape character is extensively used in open and visual. As we saw above, it is
used to terminate text input. It isalso used to abort partially formed commands. Thus ‘4escbx’ will delete
5 characters; here we changed our mind after typing a‘4’ and cancelled it with ESC to start anew witha*‘5’.
If ESC is hit when there is no partially formed command in progress, the editor will ring the bell to let you
know that nothing is happening.

Getting out. To get out of open or visual you should use the ‘g’ quit operation. If you hit two suc-
cessive DELETE (i.e. RUBOUT) characters or asingle QUIT character, you will also drop out of open or visual.

Bombing out. If you fi nd abug in the editor, or if a problem occurs in the system you may fi nd the
editor ungracefully terminating either just an open or visual command or the entire session. In this case,
you may be left with the terminal in afunny state so that keys do not echo when you hit them. The thing to
note in this situation is that your normal erase character and kill line sequences will, most likely, not work,
and also that the carriage return character may be different from the new-line character, the former being,
quite often, non-functional. The way to recover from thisis to type the command:"

stty cooked echo —nl

If you are still talking to the editor you will have to put the escape ‘!’ in front of this command. Note espe-

cialy that you must type this command without mistakes, and that you must terminate it with a newline.

(This entire operation may be diffi cult because you won't be getting any echo from the system.) If you
make a mistake, just send the mangled line with a newline and start over. If you stick a single, unmatched

“ on the end of the line, the shell will scream about the syntax error and not execute the garbage you
typed.

Sync. If you have made a number of changes and wish to insure them against a system crash, you
can invoke the sync command from within visual or open viathe CTRL(S) operation.

TIf you are lucky, your system may have the tset command which performs this function without requiring any
arguments. Then all you will have to do is type ‘tset’ followed by a new line character, possibly preceded by a
‘I if the editor is still with you.

Operation descriptions

Scope of operation. All changes in open or visual are limited in scope to the visible screen text.
Each single change may be reversed with the undo ‘u’ operation. In addition, a disastrous open or visual
command may be completely undone at the command level.

Format of the operations. Most operations take an optional preceding count, given as a decimal
number (not starting with a digit ‘0”). A number of operations take a following text string which is inserted
into the buffer as specified by the operation. Some operations take a following operation, called the target-
ing operation, to indicate the scope on which they are to have effect. This second “targeting” operation
specifies the cursor motion for the first operation. Thus a simple operation would be *x’ deleting the (sin-
gle) character under the cursor. We could delete two characters by specifying ‘2x’ or ‘xx’, the former being
preferred. An example of an operation which takes targeting is delete ‘d’, thus ‘dw’ will delete a word.
Finally, the insert operation is typified by ‘ifooEsc’ where here the text ‘foo’ is inserted before the current
cursor position. The character ESC here is used to terminate the text input.

Defi nition of ““‘word’”. There are two different definitions of “word” used in open and visual. The
primary definition is a sequence of letters, digits, and underscores, or a sequence of other (non-white) char-
acters followed by trailing white space (blanks and tabs). This is the conservative definition of word. The
other, liberal, definition of a *“word” treats it simply as a maximal sequence of non-blanks with trailing
white space. There are two sets of word operations; ‘w’ and ‘b’ are conservative, ‘W’ and ‘B’ liberal. The
back word cTRL(W) operation in text insert mode is liberal; it is especially useful for fast typists who want
to quickly and accurately back over several mangled input words.

Intraline motion operations. There are four basic kinds of intraline motion operations — those deal-
ing with characters, those dealing with “words™, those dealing with targets (either single characters or
specified column positions), and, finally, special motions e.g. to the beginning of, first non-blank character
of, or end of a line. The basic character oriented operations are SPACE advancing one position to the right
and cTrL(H) a backspace which backs up to the right.T The basic word oriented operations are ‘w’ moving
forward to the beginning of the next word, and ‘b’ moving backward to the beginning of the preceding
word.

Single character targets. The character targeting operations are ‘f’, ‘F’, ‘t’ and ‘T’. Each takes a
single following character and searches the current line for that character. The lower case operations search
to the right, the upper case operations to the left. The “f* and ‘F’ (find) operations are inclusive; that is,
they reference through to the specified characters. The ‘t” and ‘T’ (to) operations are not inclusive but
rather move the cursor up to the specified target.

Special motions. The special intraline motion sequences are specifying the first non-blank char-
acter on the line; ‘$’ specifying the last character on the line; and ‘0" specifying the first position on the
line. Finally, there is an operation ‘|’, used with a preceding count, which references the column position
specified by the count, much as a ‘f” operation would.

Operators and targeting operations. Some operations are actually prefix operators, taking another
operation, called the targeting operation or target after them to indicate the scope on which they are to have
effect. There are four such operations — ‘c’ change, ‘d’ delete, ‘g’ grab, and ‘y’ yank. The first two are by
far the most important. The targeting operation must be a intraline motion sequence. Thus ‘c2w’ could
begin an operation changing the next two words in the current line, while ‘dt)’ would delete the text up to
the next “)’ character in the current line.

Interline motions. The most primitive interline motion operations are those which advance integral
numbers of lines, typified by a carriage return Cr or new line NL. There are two kinds of such operations in
each direction — the pure cursor motion operations which maintain the current column position as much as
possible, and the motion sequences which advance to the first non-blank position of the target line.

Interline motions which respect the current column position include ‘k’ (also CTRL(K) on an ADM-3A)
moving up a line, and NL or ‘j” or cTRL(J) moving down a line. Motion sequences which place the cursor in

t On the Abm-3A the control functions of the keys ‘h’, “j°, ‘k’, and ‘I’ perform the left, down, up, and right cursor
motions respectively. Hence, for convenience on this most commonly available terminal, the operations ‘h’, ‘j’,
‘k’ and ‘I’ perform as their control-key counterparts in repositioning the cursor. Thus, in the present cases, ‘h’
works as well as cTrL(H), and ‘I’ is equivalent to sPACE.

the first non-blank position are ‘+’ or cCR moving down, and ‘=" moving up. These motion sequences take
counts thus *5-" will move back five lines. There are also special sequences ‘H’ for home which returns
the cursor to the first non-blank character of the first line on the screen, and ‘L’ to the first non-blank char-
acter of the last.

Insertion. Text insertion is indicated by text in the operation descriptions below. Pure text insertion
is begun with the ‘i’ or ‘a” operations and continues to an Esc. If the first character of text is the null char-
acter, generated by a CTRL(@), then the previous inserted text is re-used. Text may contain new-line charac-
ters which cause the current line to be split and a new line to be added to the buffer. A number of control
characters may be used to edit the inserted text while inserting. These include cTRL(H) to back over a char-
acter, cTRL(W) to back over a word (liberal definition), ‘@’ to delete the (current line portion) of the input.
Also, the character CTRL(X) is interchangeable with ‘@’ here and as an deleting operation. To enter any of
these special characters into the input line they must be preceded by a ‘\’. This applies also to the DELETE,
QUIT and cTRL(D) characters. The first two normally cause termination of the text insert; CTRL(D) is used
as a backtab in autoindent and otherwise normally ignored.

Convenient intraline insertion abbreviations are ‘I’ adding text before the first non-blank of the cur-
rent line, and ‘A’ adding text at the end of the line. These are similar to the two character sequences *"i” and
‘$a’ respectively.

Deletion. The deletion operator ‘d” may be placed before any intraline motion sequence to form a
deleting operation, deleting the moved over text from the current line. Thus ‘dw’ will delete a word while
‘d40|” will delete to column 40. Convenient deletion abbreviations are ‘X’ deleting characters, ‘X’ deleting
the specified number of preceding characters, and ‘#’, similar to ‘X’ except that it deletes the character at
the cursor while “X’ deletes the character before the cursor. Finally there are the abbreviations ‘D’ which
deletes to the end of the line, i.e. ‘d$’, and ‘@’ which deletes to the beginning of the line, i.e. ‘d0’. Note
also that the operation CTRL(X) is a synonym for ‘@’.

Change. Similar to the delete operations are the change operations, which are formed with ‘c’ and
any motion sequence. The specified text is deleted, indicated by marking the right end of it with a ‘$’ char-
acter, and then the input up to an Esc replaces it. Thus ‘cwfooesc’ will replace the current word with the
word ‘foo’. Useful abbreviated changes are ‘C’ which changes the rest of the line, i.e. ‘c$’, and ‘s’ which
changes the number of characters specified by the preceding count.

Replace. There are two forms of the replace operation. The first, ‘r’, replaces the single character
under the cursor with the single following character (no terminating Esc is required.) The second form ‘R’
replaces as many following characters as are typed with the new input characters. This operation is essen-
tially an ““overstrike”” much as a normal terminal display functions. It is useful in editing pictures and other
data where a fixed field size is to be maintained.

Interlineinserts. Some operations add a new line to the buffer. These ignore the cursor position on
the current line, and do not split it, rather creating a new line. The two operations of this type are ‘0’ which
adds a new line after the current line and ‘O’ which adds a new line before the current line. In both cases,
following text up to an Esc defines one or more new lines. A count may be usefully given before ‘0’ or ‘O’
indicating the number of physical lines to be opened up. If this is an estimate of the number of lines to be
added it can help to minimize the output required to redraw the screen on terminals which are unintelligent.
Thus an appropriate beginning of a sequence to add three new lines after the current line would be *30’.

Line deletes, joins. Lines may be deleted from the buffer using the command “\\” (two backslashes)
or joined together using *J’. A specified number of lines may be replaced with new text conveniently using
the line substitute operation ‘S’.

Interline scans. It is possible to scan between lines for text specified by a regular expression and, in
visual, to specify where this line is to appear on the screen if it must be redrawn. Forward scans are begun
with ‘/” and backward scans with ‘?°. After hitting /> or *?” you enter the pattern you wish to scan for and
it is shown on the bottom line of the screen. You can terminate the pattern either with an ESC or a CR or NL;
to abort a partially formed scanning operation you can type a DELETE or RUBOUT character. If the search
fails the bell is rung, the scan delimiter ‘/” or *?” is replaced with a ‘F’ indicating a failed search, and the
cursor returns to its previous position with typeahead discarded. If the search succeeds then the cursor is
placed at the beginning of the string which matched. The screen is redrawn with the line matched in the

center unless (in visual only) a specific positioning request has been made by following the pattern with ‘z’
or ‘v’ and then one of “1’, *-’, *’, or a CR or NL specifing the top of the screen.

Scrolling. The operation cTRL(D) may be used, as in command mode, to effect a scroll. The number
of lines to be scrolled may be specified by a preceding count; this count will hold for succeeding open and
visual scrolls until respecified.

Context displays. Sequences ‘ztype’ and ‘vtype’ may be equivalently used to specify context dis-
play as in command mode. In open mode the type is not required and a command mode like ‘z=" command
is always done. In visual type may be any of ‘17, *-’, “.” or CR or NL specifying the top of the screen.

Memory. The editor remembers the last visual or open command and associated data in each of sev-
eral categories and allows it to be respecified by a very short, one character sequence.

Last single character scan. The last of the targeting operations f, F, t, and T is remembered with the
character supplied to it. This combination is used again through the operation *;’.

Last interline scan. The last of the interline scans using ‘/” or ‘?” is remembered and may be
repeated with the operation n (next.)

Last modifying command. The last command which modified the buffer is remembered and may
be repeated by the command form *.”.

Last inserted text. The text which was last inserted (up to 128 characters) is remembered and may
be specified in future operation by a null character, generated by a CTRL(@). This is given when text
would begin, instead of text. The EsSC terminating the text is not needed. If there is no previous
inserted text, or if the previous inserted text was longer than 128 characters, the bell is rung and the
operation completes inserting no text. If the aborted operation was a scan via ‘/” or “?’, then it aborts
as though it had been cancelled with a DELETE character.

Last deleted text. The last deleted text which was part of a single line (up to 128 characters) is
remembered. If the last thing deleted was one or more lines, then this will be remembered instead.
There are put operations ‘p” and ‘P’ which allow this deleted text to be returned to the buffer. Note
that a number of operations set both the deleted and inserted text (notably change operations.)

Grab, yank, and put. There are two related operators yank ‘y’ and grab ‘g’ which take a motion
sequence target and pretend it was the previous inserted or deleted text respectively. The grab ‘g’ operation
is especially useful when you wish to search for something on the screen — you can grab it, e.g. if it is a
word with ‘gw’, and then do a scan defaulting the search with a null character, i.e.: */CTRL(@)’. There are
also operations ‘p’ and “P” which put text which was deleted back into the buffer. If the previous deletion
was of lines, then these operations will add new lines with the same text after or before the current line
respectively. Similarly if the previous deletion was a part of a line, then the text will be put after/before the
cursor position in the current line. There is also an operation “Y’ which yanks a specified number of lines
as though they had been deleted but does not delete them. This can be used to copy lines. As an example,
the sequence “Yp’ places a copy of the current line after the current line.

Interline motions. The are a number of interline motion sequences dealing with the mark registers
and specific line numbers. The operation ‘G’ causes the line specified by the preceding count to become
the current line. If this line is on the screen, then the screen is not redrawn. The default line for ‘G’ if no
count is given is the last line of the file. Thus ‘G’ is the easiest way to get to the end of the file.

The sequences ‘~ x” where x is a single lower case letter cause the display to return to the specified
marked line, with the marked line in the center. The previous context mark ‘=~ * may also be requested here,
and it is set by the searching operations ‘/* and ‘?’, the ‘G’ operation, the mark operations *~ x’, and the ‘v’
or ‘z’ operations when a count is given. Marks may be set while in visual or open by using the K operation
and following it by a single lower case letter specifying the register to be marked.

Miscellaneous notes on visual and open

The options beautify and indicateul are suppressed in open and visual. All the features of autoindent
are available. If the cursor is at a tab character in the line which is represented by a number of blanks, it is
placed at the last blank. Lines yanked with “Y” or deleted with ‘\\" may be put with ‘p’ or ‘P’ in a later

visual or open command only so long as no edit or next command intervenes. It is not possible to undo an
appending operation in open or visual which resulted in the creation of more than a screen full of lines. An
operation affecting only the text within asingle line is undoable only while the cursor remains on that line.

Visual and open mode summary

The following table summarizes the visual and open operations. For each operation we indicate its
general form, whether it can take a count, and whether it can be used as a targeting operation.

Open and visual operations

Operation Count? | Target? | Description

atext ESC yes no Append text after cursor

b yes yes Backwards words

ctargettextesc | no no Change target to text

dtarget yes no Delete target

e yes yes To end of word (unimplemented)

fchar yes yes Find char to right of cursor

gtarget no no Define previous inserted text

h(<) yes yes Backwards characters (like CTRL(H))
itextesc yes no Insert text before cursor

jQ) yes no Cursor down lines, same column if possible
k(1) yes no Cursor up lines, same column

1(-) yes yes Forwards character

n no no To next line matching the previous scanning regular

expression (as described below) in the direction of the
previous open or visual intraline search using ‘/* or *?’.

otextEsC yes no Open a new line after the current line leaving room for
the specified number of physical lines. Enter text insert
mode on that line.

p no no Put the text lines last deleted with “\\’ or the last yanked
‘Y’ lines after the current line. If the last deletion was
of part of a line rather than a Y’ or “\\’ then that deleted
text is place in the current line after the cursor.

q no no Quit open or visual, returning to command mode. The
command level undo can reverse the entire open or
visual command.

rchar yes no Replace each of the specified number of characters with
a char

stext EsC yes no Replace the specified number of characters with the
specified text

tchar yes yes Cursor right to just before char

u no no Undo last change

% no no (In open) do command mode ‘z=" returning to open
mode on current line.

vspec yes no (In visual) with spec one of *., =7, “1” or ‘™7, “+’, or CR

or NL does the specified type of visual command at the
specified line, defaulting to the current line

w yes yes Forward to beginning of each word
X yes no Delete characters

ytarget no no Define previous deleted text

z - - Synonym for v

Astr ESC yes no Append at end (short for ‘$a’)

B yes yes Back word (simple blank/non-blank)

Open and visual operations

Operation Count? | Target? | Description

CstrEesc no no Change to end (short for ‘c$’)

D no no Delete to end (short for ‘d$’)

E yes yes Back to end of previous word (unimplemented)

Fchar yes yes Find char to left of cursor

G yes no Goto specified line; last line default

H no no To first non-blank on first screen line

| yes no Insert before first non-blank character (i.e. “7i’)

J yes no Join lines

Kx no no Mark current line in mark register x

L no no To first non-blank character on last screen line

OtextEsC yes no Like o but before current line

P no no Like p but before current line or before cursor

Rtext ESC no no Replace (overstrike) with input text

Stext ESC yes no Replace specified number of lines

T yes yes Like t but scanning to left of cursor

w yes yes Forward word (simple blank/non-blank)

X yes no Delete preceding characters

Y yes no Yank lines, copying them without deleting them so that
they may be put with p or P.

SPACE yes yes Right one character

0 no yes To first character of line

tor” no yes To first non-white character

$ no yes To end-of-line

@ no no Delete characters before cursor

yes no Delete characters backwards, starting with the character
under the cursor

no no Repeat last modifying command

; yes yes Repeat last f, F, t, or T operation

\\ yes no Delete lines

+0rCcRr yes no Forward lines to first non-blank

- yes no Backwards lines to first non-blank

/reEsc no no Forward to first line matching re. To cancel the search,
send a DELETE Or RUBOUT.

?reesc no no To previous line matching re

re/ztypeEsc no no (In visual) performs the specified type of a z or v com-
mand before the target specified with /re/ or ?re?.

| yes yes To specified column or column before last up/down line
movement

CTRL(D) yes no Down scrall lines; in visual hold the cursor’s relative
position on the screen. If a count is given it becomes
the number of logical lines to scroll in open or visual
until another such count is given.

CTRL(S) no no Do a sync command

CTRL(W) yes yes Synonym for ‘B’

Open and visual operations
Operation Count? | Target? | Description
CTRL(X) no no Synonym for ‘ @’
CTRL(Z) no no Maximize information on screen (clean-up)
ESC - - Cancel partially formed command
RUB - - Cancel a partially formed command. If repeated, drop
out to command mode
QUIT - - Drop out to command mode

Text insertion mode corrections

The following sequences are used in making corrections to text being added in text insertion mode.
They are also used when entering the regular expression re for ainterline search using */” or ‘7.

Text insertion mode editing sequences
Sequence Action
CTRL(H) Back a character
@ Delete al input on current line
CTRL(X) Synonym for ‘' @’
CTRL(W) Delete aword (simple blank/non-blank defi nition)

RUB Drop out of text insert, and also visual or open

QUIT Like RUB

\special With special any of the above chars, gives special
CROr NL End current line, rest of text to anew, following line

ESC Terminate the text

Substitute replacement patterns

There are several metacharacters which may be used in substitute replacement patterns. As is the
case for the regular expression metacharacters, there are fewer replacement pattern metacharacters if
nomagic is set. This is discussed more below. In fact, with nomagic the only replacement pattern
metacharacter is the escaping ‘\’ (this is the default for edit).

The basic metacharacters for the replacement pattern are ‘&’ and *~. These are given as \&’ and ‘"’
when nomagic is set. The metacharacter ‘&’ is by far the most important of these. Each instance of this
metacharacter is replaced by the characters which the regular expression matched. Thus the substitute com-
mand

substitute/some/& other/

will replace the string ‘some’ with the string ‘some other’ the first time it occurs on the current line. The
metacharacter “™ stands, in the replacement pattern, as it did in regular expression formation, for the defin-
ing text of the previous replacement pattern.

Other metasequences are possible in the replacement pattern, and are introduced by the escaping
character ‘\’; this is the default for edit. The sequence “\n’ is replaced by the text matched by the n-th regu-
lar subexpression enclosed between “\(” and ‘\)’.T The metasequences “\u’, ‘\I’, \U’, ‘\L’, and ‘\E’ and ‘\e’
are used to perform systematic case conversion of letters. The sequences ‘\u’ and ‘\I’ cause the immedi-
ately following character in the replacement to be converted to upper- or lower-case respectively if this
character is a letter. The sequences ‘\U’ and ‘\L’ turn such conversion on, either until ‘\E’ or “\e’ is encoun-
tered, or until the end of the replacement pattern. By bracketing selected portions of a regular expression
with “\(" and ‘\)” and using “\U’ or “\L it is possible to systematically capitalize entire words or phrases.

Regular expressions

Ex supports a form of regular expression notation. A regular expression specifies a set of strings of
characters. A member of this set of strings is said to be matched by the regular expression. Regular expres-
sions may be used in locating or selecting lines by their content, in open and visual modes to position the
cursor within the file, and in the substitute command to select the portion of a line to be substituted.

Ex remembers two previous regular expressions: the previous regular expression used in a substitute
command and the previous regular expression used elsewhere (referred to as the previous scanning regular
expression.) The previous regular expression can always be referred to by a null re, e.g. “//’ or “??°.

Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on the setting of
the magic option. The ex default setting of magic gives quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user must remember that these metacharacters are
magic and precede them with the character *\’ to use them as “ordinary” characters. With nomagic, the
default for edit, regular expressions are much simpler, there being only two metacharacters. The power of
the other metacharacters is still available by preceding the (how) ordinary character with a ‘\’. Note that ‘\’
is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of this option is

magic. To discern what is true with nomagic it suffices to remember that the only special characters in this
case will be ‘1 at the beginning of a regular expression, ‘$’ at the end of a regular expression, and o0 f

Basic regular expression summary
The following basic constructs are used to construct magic mode regular expressions.

t When nested, parenthesized subexpressions are present, n is determined by counting occurrences of “\(" start-
ing from the left.

1 With nomagic the characters <" and ‘&’ also lose their special meanings related to the replacement pattern of
a substitute.

Basic regular expression forms

Form

Meaning

char

An ordinary character which matches itself. The character ‘1’ (“7) at the
beginning of a line, ‘$” at the end of line, ‘[T as any character other than the
first, ©, “\’, °[’, and “~” are not ordinary characters and must be escaped (pre-
ceded) by ‘\’ to be treated as such.

Up-arrow (or circumflex ‘) at the beginning of a pattern forces the match to
succeed only at the beginning of a line.

At the end of a regular expression forces the match to succeed only at the end
of the line.

A period character matches any single character except the new-line character.

\<

This sequence in a regular expression forces the match to occur only at the
beginning of a ““variable” or “word”’; that is, either at the beginning of a line,
or just before a letter, digit, or underline and after a character not one of these.

\>

Similar to “\<’, but matching the end of a “variable” or “word™, i.e. either the
end of the line or before character which is neither a letter, nor a digit, nor the
underline character.

[string]

A string of characters enclosed in square brackets matches any (single) char-
acter in the class defined by string. Most characters in string define them-
selves. A pair of characters separated by ‘=’ in string defines the set of char-
acters collating between the specified lower and upper bounds, thus ‘[a-z] as
a regular expression matches any (single) lower-case letter. If the first charac-
ter of string is an “1” or “~’ then the construct matches those characters which
it otherwise would not; thus ‘["a-z]” matches anything but a lower-case letter
(and of course a newline). To place any of the characters 1, “’, [’, or ‘=" in
string you may escape them by preceding them with a ‘.

More complicated regular expressions are built by putting these simple pieces together. The concate-
nation of two regular expressions matches the longest string which can be divided with the first piece
matching the first regular expression and the second piece matching the second. Thus the regular expres-
sion ‘..e’ will match any three characters ending in the character ‘e’, while “"[aeiou]’ matches any vowel

which appears at the beginning of a line.

Any of the (single character matching) regular expressions mentioned above may be followed by the
character ‘00 to form a regular expression which matches any number of adjacent occurrences (including 0)
of characters matched by the regular expression it follows. The character *~ * may be used in a regular
expression, and matches the text which defined the replacement part of the last substitute command. A reg-
ular expression may be enclosed between the sequences “\(” and ‘\)” with side effects in the substitute com-
mand, and an escaped digit, e.g. ‘\1’, matches the text which was matched by the corresponding previous

“\(" and “\)” bracketed expression, numbered in order of occurrence of the “\(” delimiters.

Option descriptions

autoindent, ai default: noai
The autoindent option can be used to ease the preparation of structured program text. At the begin-
ning of each append, change or insert command or when a new line is opened or created by an
append, change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the fi rst line changed or the line inserted before and cal culates the amount of white
space at the start of theline. It then aligns the cursor at the level of indentation so determined.

If the user then types lines of text in, they will continue to be justifi ed at the displayed indenting
level. If more white space is typed at the beginning of a line, the following line will start aligned
with the fi rst non-white character of the previous line. To back the cursor up to the preceding tab
stop one can hit cTRL(D). The tab stops going backwards are defi ned at multiples of the shiftwidth
option. You cannot backspace over the indent, except by sending an end-of-fi le with a CTRL(D).

Specialy processed in this mode is a line with no characters added to it, which turns into a com-
pletely blank line (the white space provided for the autoindent is discarded.) Also specialy pro-
cessed in this mode are lines beginning with an *~ ’ or ‘1’ and immediately followed by a cTRL(D).
This causes the input to be repositioned at the beginning of the line, but retaining the previous indent
for the next line. Similarly, a ‘0’ followed by a cTRL(D) repositions at the beginning but without
retaining the previous indent.

Autoindent doesn’t happen in global commands or when the input is not aterminal.

autoprint, ap default: ap
The autoprint option causes the current line to be printed after each delete, copy, join, move, substi-
tute, tabulate, transcribe, undo, xpand or shift command. This has the same effect as supplying a
trailing ‘p’ to each such command. Autoprint is suppressed in globals, and only applies to the last of
many commands on aline.

beautify default: nobeautify
Causes all control characters except tab, newline and form-feed to be discarded from the input. A
complaint is registered the fi rst time a backspace character is discarded. Beautify does not apply to
command input, or to text insertion mode. It applies only when you have entered text input mode by
issuing ainsert, delete, or change command from command mode.

directory, dir default: dir=tmp
The directory option specifi es the directory in which ex places it buffer fi le. If this directory in not
writable, then the editor will exit abruptly when it fails to be able to create its buffer there.

edited no default
The current fi le is considered to be edited when the buffer contents are directly related to it. In this
case the write command will write to the fi le even though it exists. In all normal editing patterns the
current fi leis considered edited.

When the current fi le name is explicitly changed by the fi le command, then the fi le is not considered
edited to protect a previous existing fi le of the same name from accidental destruction.

If afileis not successfully read in by an edit command, then it is not considered edited so that the
possibly incomplete image of the fi le in the editing buffer will not be accidentally written over its

contents.
editany, ea default: noea
Disables the edit and read command fi le sensibility checks.
errorbells, eb default: eb

If eb then error messages are preceded by two bells. The bell ringing in open and visual on errorsis
not suppressed by setting noeb.

fork default: fork
If nofork shell escapes will be inhibited the first time they are attempted if there has been “No write”
of the buffer since the last change occurred. In this case, the aborted command can be repeated by
using the command form ‘11", If fork, the default, a warning is given, but the command is given to a
shell for execution anyways.

home default: user-dependent
The home directory is an image of the user’s entry in the htmp data base. It is used initially as the
origin of the file .exrc and is the default directory for the chdir command.

hush default: nohush
Inhibits interactive diagnostic information including prompts, printing of file names, line and charac-
ter counts, command feedback, and echoing by the ‘1” shell escape.

ignorecase, ic default: noic
If ignorecase is set, all upper case characters in the text are mapped to lower case in regular expres-
sion matching. In addition, all upper case characters in regular expressions are mapped to lower case
except in character class specifications.

indicateul, iu default: noiu
If indicateul is set, non-blank characters overstruck with underlines (and vice-versa) cause output
lines to be split into two parts for printing — the text and the underlining.

list default: nolist
If list is set, all printed lines will be displayed (more) unambiguously, as is done by the list command.
magic default: magicT

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with only ‘1’
or ‘" and ‘$’ having magic effects. In addition the metacharacters “~” and ‘&’ of the replacement pat-
tern are treated as normal characters. All the normal metacharacters may be made magic when
nomagic is set by preceding them with a “\’.

mode default: mode=644
Mode is the value the permission bits of any file created by the write command will have initially.
The default allows reading and writing of the created file by its owner, as well as reading of the file
by others.

notify default: notify:5i
The notify option specifies a threshold for feedback from commands. Any command which modifies
more than the specified number of lines will provide feedback as to the scope of its changes. For
commands such as global, open, undo, and visual which have potentially more far reaching scope,
the net change in the number of lines in the buffer is presented at the end of the command, subject to
this same threshold. Thus notification is suppressed during a global command on the individual com-
mands performed.

number default: nonumber
The number option may be set to cause all output lines to be printed with their line numbers. In addi-
tion each input line will be prompted for by supplying the line number it will have.

open default: openT
If noopen then the commands open and visual are not permitted. This is set for edit to prevent confu-
sion resulting from accidental entry to open or visual mode.

t Default is nomagic for edit.
1 Notify=1 for edit.
 Noopen for edit.

optimize default: optimize
If optimize is set, and the terminal permits, throughput of text is expedited by setting the terminal to
not do automatic carriage returns and to noecho mode when printing more than one (logical) line of
output. This can greatly speed output on terminals without addressible cursors if leading blanks are
present, but causes all type-ahead to be lost. With optimize, after a multi-line print you cannot type
ahead until the prompt reappears.

printall, pa default: noprintall
If printall is set then all characters will be printed in the output as they appear in the line when the
print command is used. Normally, the blanks and tabs in the line may be rearranged or replaced with
cursor addressing to improve throughput, and non-printing characters are printed as ‘7. With print-
all these modifi cations to the pure line text are suppressed.

prompt default: prompt
Command mode input is prompted for with a‘:’” if the prompt option is set.
scroll default: scroll=12

The scroll option determines the number of logical lines scrolled when an end-of-fi le is received from
aterminal input.

shell, sh default: sh=/bin/sh
The shell option gives the path name of the shell forked for the shell escape command ‘!".
shiftwidth, sw default: sw=8

The shiftwidth option gives the width a software tab stop. This is used in reverse tabbing with
CTRL(D) when using autoindent to append text, and by the shift commands. Note that the tab charac-
ter always references tab stops every eight positions and is not affected by this option.

sticky default: nosticky
If sticky is set then fgs like *'I’, ‘“# and *:’, given after a command, stick around until new flags are
specifi ed, allowing more lines to be printed in the same way without permanently changing options
or continually hitting these keys.

terse default: noterse
If terseis set, shorter error diagnostics are produced. These are designed for the experienced user.
ttytype, tty default: terminal dependent

This option gives the terminal type of the output device. Setting ttytype indicates the specia capabili-
ties of the terminal in use. Current terminal types are defi ned by the ttycap data base. This data base
is conveniently handled using the ttytype program. For most hard-wired ports, ttytype should be set
correctly automatically. A mechanism exists using ttytype (VI) for setting the type semi-automati-
cally on dial-up lines.

visualmessage, vim default: novm
Interconsol e messages are prohibited during visual commands if novmis set.
window default: window=23
The number of linesin atext window for the zcommand is specifi ed by the window option.
wrap default: wrap
If nowrap then searches using the regular expressions in addressing will not wrap around past the end
of thefi le.
Limits

The editor limits that the user is likely to encounter are as follows: 512 characters per line, 256 char-
acters per global command list, 64 characters per fi le name, 128 characters in the previous inserted and
deleted text in open or visual, 100 characters in a shell escape command, 30 characters in a string valued
option, and 256K characters in the temporary fi le." The limit on the number of lines depends on the amount
of core: each line takes at least 1 word, and to effect undo occasionally up to 2. This editor is much larger

TRepeated blanks and tabs are compressed in the temporary fi le, as are blanks between “words”’. This makes
the buffer effectively larger than 256K characters; if the fi le being edited contains many repeated blanks, it may
be editable even if it islarger than 256K .

than ed and on PDP 11/40's which do not have separate instruction and data space it is limited to about 2000
linesif visual or open are ever used. If afull coreload of user space is not available ex may not be usable.
On a PDP 11/45 or 11/70 the size of the editor is not a problem as it can run with separate instruction and
data

Notes on temporary file overflow

This editor uses a temporary fi le as a workspace. The management of this fi le is done in the same
way asin ed. Eachlineinthefileis represented by an in-core pointer to the image of that line on the disk.

The important point to note here is that the editor does not reclaim space in this temporary fi le used
by lines which are deleted or changed. This means that fi les which are larger than 128K characters may be
diffi cult to edit. Similarly systematic changes on large numbers of lines may run the editor out of tempo-
rary fi le space.

If the editor runs out of temporary space you can write the fi le and then use an edit command to read
it back in. Thiswill reclaim the lost space. A better solution isto split the fi le into smaller pieces or to use
astream editor such asgreson thefi le. Gresis described in section | of the UNIX Programmers Manual.

