4.2BSD Networ king I mplementation Notes

Revised July, 1983

Samuel J. Leffler, William N. Joy, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This report describes the internal structure of the networking facilities developed
for the 4.2BSD version of the UNIX* operating system for the VAXT. These facilities
are based on several central abstractions which structure the external (user) view of net-
work communication as well as the internal (system) implementation.

The report documents the internal structure of the networking system. The
“4.2BSD System Manual” provides a description of the user interface to the networking
facilities.

* UNIX is a trademark of Bell Laboratories.
t DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

TABLE OF CONTENTS

1. Introduction

2. Overview

3. Goals

4. Internal addressrepresentation
5. Memory management

6. Internal layering
1. Socket layer
1.1, Socket state
1.2, Socket data queues
.1.3. Socket connection queueing
.2. Protocol layer(s)
3. Network-interface layer
.3.1. UNIBUS interfaces

7. Socket/protocol interface

8. Protocol/protocol interface

1. pr_output

2. pr_input

3. pr_ctlinput

4. pr_ctloutput

9. Protocol/network-interface interface

1. Packet transmission
2. Packet reception

10. Gateways and routing issues
1. Routing tables
.2. Routing table interface
3. User level routing policies

11. Raw sockets
1. Control blocks
2. Input processing
.3. Output processing

12. Buffering and congestion control
1. Memory management
.2. Protocol buffering policies
3. Queue limiting
4. Packet forwarding
13. Out of band data
14. Trailer protocols
Acknowledgements

References

CSRG TR/6

Leffler, et. al.

1. Introduction

This report describes the internal structure of facilities added to the 4.2BSD version of the UNIX
operating system for the VAX. The system facilities provide a uniform user interface to networking within
UNIX. In addition, the implementation introduces a structure for network communications which may be
used by system implementors in adding new networking facilities. The internal structure is not visible to
the user, rather it is intended to aid implementors of communication protocols and network services by pro-
viding a framework which promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system interface, as
described in the 4.2BSD System Manual [Joy82a]. Basic understanding of network communication con-
cepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding, when possi-
ble, those portions which are utilized only by the interprocess communication facilities.

CSRG TR/6 Leffler, et. al.

2. Overview

If we consider the International Standards Organization’s (ISO) Open System Interconnection (OSI)
model of network communication [1ISO81] [Zimmermann80], the networking facilities described here cor-
respond to a portion of the session layer (layer 3) and all of the transport and network layers (layers 2 and
1, respectively).

The network layer provides possibly imperfect data transport services with minimal addressing struc-
ture. Addressing at this level is normally host to host, with implicit or explicit routing optionally supported
by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and service
addressing are normally included. Reliability is usually managed by explicit acknowledgement of data
delivered. Failure to acknowledge a transfer results in retransmission of the data. Sequencing may be han-
dled by tagging each message handed to the network layer by a sequence number and maintaining state at
the endpoints of communication to utilize received sequence numbers in reordering data which arrives out
of order.

The session layer facilities may provide forms of addressing which are mapped into formats required
by the transport layer, service authentication and client authentication, etc. Various systems also provide
services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility routines,
then examine the internal layering. The contents of each layer and its interface are considered. Certain of
the interfaces are protocol implementation specific. For these cases examples have been drawn from the
Internet [Cerf78] protocol family. Later sections cover routing issues, the design of the raw socket interface
and other miscellaneous topics.

CSRG TR/6 Leffler, et. al.

3. Goals

The networking system was designed with the goal of supporting multiple protocol families and
addressing styles. This required information to be “hidden” in common data structures which could be
manipulated by all the pieces of the system, but which required interpretation only by the protocols which
“controlled” it. The system described here attempts to minimize the use of shared data structures to those
kept by a suite of protocols (a protocol family), and those used for rendezvous between *“synchronous” and
“asynchronous” portions of the system (e.g. queues of data packets are filled at interrupt time and emptied
based on user requests).

A major goal of the system was to provide a framework within which new protocols and hardware
could be easily be supported. To this end, a great deal of effort has been extended to create utility routines
which hide many of the more complex and/or hardware dependent chores of networking. Later sections
describe the utility routines and the underlying data structures they manipulate.

CSRG TR/6 Lefiler, et. al.

4. Internal addressrepresentation
Common to all portions of the system are two data structures. These structures are used to represent
addresses and various data objects. Addresses, internally are described by the sockaddr structure,

struct sockaddr {
short sa_family; /* data format identifier */
char sa_data[14]; /* address */
j3
All addresses belong to one or more address families which define their format and interpretation. The
sa_family field indicates which address family the address belongs to, the sa_data field contains the actual
data value. The size of the data field, 14 bytes, was selected based on a study of current address formats*.

* Later versions of the system support variable length addresses.

CSRG TR/6 Lefiler, et. al.

5. Memory management

A single mechanism is used for data storage: memory buffers, or mbuf’'s. An mbuf is a structure of
the form:

struct mbuf {

struct mbuf *m_next; /* next buffer in chain */

u_long m_off; /* offset of data*/

short m_len; /* amount of datain this mbuf */
short m_type; /* mbuf type (accounting) */
u_char m_datfMLEN]; [* data storage */

struct mbuf *m_act; /* link in higher-level mbuf list */

H
The m_next fi eld is used to chain mbufs together on linked lists, while the m act fi eld allows lists of mbufs
to be accumulated. By convention, the mbufs common to a single object (for example, a packet) are

chained together with the m_next fi eld, while groups of objects are linked via the m_act fi eld (possibly
when in aqueue).

Each mbuf has a small data area for storing information, m dat. The m len fi eld indicates the
amount of data, while the m_off fi eld is an offset to the beginning of the data from the base of the mbuf.
Thus, for example, the macro mtod, which converts a pointer to an mbuf to a pointer to the data stored in
the mbuf, has the form

#defi ne mtod(x,t) (O ((int)(x) + (x)->m_off))
(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assignment).

In addition to storing data directly in the mbuf’s data area, data of page size may be aso be stored in
a separate area of memory. The mbuf utility routines maintain a pool of pages for this purpose and manipu-
late a private page map for such pages. The virtual addresses of these data pages precede those of mbufs,
so when pages of data are separated from an mbuf, the mbuf data offset is a negative value. An array of ref-
erence counts on pages is also maintained so that copies of pages may be made without core to core copy-
ing (copies are created simply by duplicating the relevant page table entries in the data page map and incre-
menting the associated reference counts for the pages). Separate data pages are currently used only when
copying data from a user process into the kernel, and when bringing datain at the hardware level. Routines
which manipulate mbufs are not normally aware if data is stored directly in the mbuf data array, or if it is
kept in separate pages.

The following utility routines are available for manipulating mbuf chains:

m = m_copy(mO, off, len);
The m_copy routine create a copy of al, or part, of alist of the mbufsin m0. Len bytes of data, start-
ing off bytes from the front of the chain, are copied. Where possible, reference counts on pages are
used instead of core to core copies. The original mbuf chain must have at least off + len bytes of
data. If lenisspecifi ed asM_COPYALL, all the data present, offset as before, is copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is performed.

m_adj(m, diff);
The mbuf chain, mis adjusted in size by diff bytes. If diff is non-negative, diff bytes are shaved off
the front of the mbuf chain. If diff is negative, the alteration is performed from back to front. No
space is reclaimed in this operation, alterations are accomplished by changing the m_len and m_off
fi elds of mbufs.

m =m_pullup(mO, size);
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is guaranteed to have
at least size bytes of data in contiguous memory (allowing access via a pointer, obtained using the
mtod macro). If the origina data was less than size bytes long, len was greater than the size of an
mbuf data area (112 bytes), or required resources were unavailable, m is 0 and the origina mbuf
chain is deallocated.

CSRG TR/6 Leffler, et. al.

This routine is particularly useful when verifying packet header lengths on reception. For example, if
a packet is received and only 8 of the necessary 16 bytes required for a valid packet header are
present at the head of the list of mbufs representing the packet, the remaining 8 bytes may be “pulled
up” with a single m_pullup call. If the call fails the invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the mbuf
associated with a data area by masking off the low bits of the virtual address. This allows modules to store
data structures in mbufs and pass them around without concern for locating the original mbuf when it
comes time to free the structure. The dtom macro is used to convert a pointer into an mbuf’s data area to a
pointer to the mbuf,

#define dtom(x) ((struct mbuf *)((int)x & “(MSIZE-1)))
Mbufs are used for dynamically allocated data structures such as sockets, as well as memory allo-

cated for packets. Statistics are maintained on mbuf usage and can be viewed by users using the netstat(1)
program.

CSRG TR/6 Lefiler, et. al.

6. Internal layering

The internal structure of the network system is divided into three layers. These layers correspond to
the services provided by the socket abstraction, those provided by the communication protocols, and those
provided by the hardware interfaces. The communication protocols are normally layered into two or more
individual cooperating layers, though they are collectively viewed in the system as one layer providing ser-
vices supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the interfaces each
must conform to.

6.1. Socket layer

The socket layer deals with the interprocess communications facilities provided by the system. A
socket is a bidirectional endpoint of communication which is **typed” by the semantics of communication
it supports. The system calls described in the 4.2BSD System Manual are used to manipul ate sockets.

A socket consists of the following data structure:

struct socket {
short SO_type; [* generic type*/
short SO_options; /* from socket call */
short so_linger; [* time to linger while closing */
short So_state; /* interna state flags */
caddr_t So_pcb; /* protocol control block */
struct protosw *so_proto; /* protocol handle */
struct socket *so_head,; /* back pointer to accept socket */
struct socket *so_q0o; /* queue of partial connections */
short so_gOlen; [* partialson so_q0*/
struct socket *so_q; /* queue of incoming connections */
short so_glen; /* number of connectionson so_q */
short so_glimit; /* max number queued connections */
struct sockbuf so_snd; /* send queue */
struct sockbuf so_rev; [* receive queue */
short SO_timeo; /* connection timeout */
u_short SO_error; [* error affecting connection */
short so_oobmark; /* charsto oob mark */
short SO_pagrp; /* pgrp for signals*/

|3

Each socket contains two data queues, so_rcv and so_snd, and a pointer to routines which provide
supporting services. The type of the socket, so_type is defi ned at socket creation time and used in selecting
those services which are appropriate to support it. The supporting protocol is selected at socket creation
time and recorded in the socket data structure for later use. Protocols are defi ned by a table of procedures,
the protosw structure, which will be described in detail later. A pointer to a protocol specifi ¢ data structure,
the ““protocol control block™ isaso present in the socket structure. Protocols control this data structure and
it normally includes a back pointer to the parent socket structure(s) to alow easy lookup when returning
information to a user (for example, placing an error number in the so_error fi eld). The other entriesin the
socket structure are used in queueing connection requests, validating user requests, storing socket character-
istics (e.g. options supplied at the time a socket is created), and maintaining a socket's state.

Processes ‘“‘rendezvous at a socket” in many instances. For instance, when a process wishes to
extract data from a socket’s receive queue and it is empty, or lacks suffi cient data to satisfy the request, the
process blocks, supplying the address of the receive queue as an *‘wait channel’ to be used in notifi cation.
When data arrives for the process and is placed in the socket’s queue, the blocked process is identifi ed by
thefact it iswaiting ** on the queue’”.

CSRG TR/6 Leffler, et. al.

6.1.1. Socket state
A socket’s state is defi ned from the following:

#define SS_NOFDREF 0x001 * nofi le table ref any more */
#define SS_ ISCONNECTED 0x002 * socket connected to a peer */
#define SS ISCONNECTING 0x004 /* in process of connecting to peer */

#define SS ISDISCONNECTING 0x008 * in process of disconnecting */
#define SS CANTSENDMORE 0x010 [* can’'t send more data to peer */

#define SS CANTRCVMORE 0x020 [* can't receive more data from peer */
#define SS_CONNAWAITING 0x040 [* connections awaiting acceptance */
#define SS RCVATMARK 0x080 [* a mark oninput */

#define SS PRIV 0x100 [* privileged */

#define SS NBIO 0x200 /* non-blocking ops */

#define SS ASYNC 0x400 [* asynci/o notify */

The state of a socket is manipulated both by the protocols and the user (through system calls). When
a socket is created the state is defi ned based on the type of input/output the user wishes to perform. ““Non-
blocking” 1/0 implies a process should never be blocked to await resources. Instead, any call which would
block returns prematurely with the error EWOULDBLOCK (the service request may be partially fulfi lled,
e.g. arequest for more data than is present).

If a process requested ** asynchronous” notifi cation of events related to the socket the SIGIO signal is
posted to the process. An event is a change in the socket’s state, examples of such occurances are: space
becoming available in the send queue, new data available in the receive queue, connection establishment or
disestablishment, etc.

A socket may be marked * priviledged” if it was created by the super-user. Only priviledged sockets
may send broadcast packets, or bind addresses in priviledged portions of an address space.

6.1.2. Socket data queues

A socket’s data queue contains a pointer to the data stored in the queue and other entries related to
the management of the data. The following structure defi nes a data queue:

struct sockbuf {
short sb _cc; /* actual charsin buffer */
short sb_hiwat; /* max actual char count */
short sb_mbcnt; /* chars of mbufs used */
short sb_mbmax; /* max chars of mbufsto use*/
short sb_lowat; /* low water mark */
short sb_timeo; [* timeout */
struct mbuf *sb_mb; /* the mbuf chain */
struct proc *sb sel; [* process selecting read/write */
short sb fhgs, [* flegs, see below */

|3

Datais stored in a queue as a chain of mbufs. The actual count of characters as well as high and low
water marks are used by the protocols in controlling the fow of data. The socket routines cooperate in
implementing the fow control policy by blocking a process when it requests to send data and the high
water mark has been reached, or when it requests to receive data and |ess than the low water mark is present
(assuming non-blocking I/O has not been specifi ed).

When a socket is created, the supporting protocol *reserves’ space for the send and receive queues
of the socket. The actual storage associated with a socket queue may fluctuate during a socket’s lifetime,
but is assumed this reservation will always allow a protocol to acquire enough memory to satisfy the high
water marks.

CSRG TR/6 Leffler, et. al.

The timeout and select values are manipulated by the socket routines in implementing various por-
tions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources;

#define SB_LOCK 0x01 /* lock on data queue (so_rcv only) */
#define SB_WANT 0x02 /* someoneiswaiting to lock */
#define SB_WAIT 0x04 /* someoneiswaiting for data/space */
#define SB_SEL 0x08 /* buffer is selected */

#define SB_COLL 0x10 /* collision selecting */

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queueing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are considered dis-
tinct. One side is termed active, and generates connection requests. The other side is called passive and
accepts connection requests.

From the passive side, a socket is created with the option SO_ACCEPTCONN specifi ed, creating two
gueues of sockets: so_g0 for connections in progress and so_¢ for connections aready made and awaiting
user acceptance. As a protocol is preparing incoming connections, it creates a socket structure queued on
so_g0 by calling the routine sonewconn(). When the connection is established, the socket structure is then
transfered to so_g, making it available for an accept.

If an SO_ACCEPTCONN socket is closed with sockets on either so_g0 or so_g, these sockets are
dropped.

6.2. Protocol layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics, some of
which are used in deciding which socket type(s) they may support.

An entry in the * protocol switch’™” table exists for each protocol module confi gured into the system.
It has the following form:

struct protosw {

short pr_type; * socket type used for */
short pr_family; [* protocol family */
short pr_protocol; * protocol number */
short pr_flgs,; * socket visible attributes */
[* protocol-protocol hooks */
int (*pr_input)(); /* input to protocol (from below) */
int (* pr_output)(); * output to protocol (from above) */
int (*pr_ctlinput)(); * control input (from below) */
int (*pr_ctloutput)(); * control output (from above) */
[* user-protocol hook */
int (*pr_usrreq)(); /* user request */
[* utility hooks */
int (*pr_init)(); [* initialization routine */
int (*pr_fasttimo)(); /* fast timeout (200ms) */
int (*pr_slowtimo)(); /* slow timeout (500ms) */
int (*pr_drain)(); * fush any excess space possible */

1

A protocol is called through the pr_init entry before any other. Theresfter it is called every 200 mil-
liseconds through the pr_fasttimo entry and every 500 milliseconds through the pr_slowtimo for timer
based actions. The system will call the pr_drain entry if it islow on space and this should throw away any
non-critical data

CSRG TR/6 Leffler, et. al.

Protocols pass data between themselves as chains of mbufs using the pr_input and pr_output rou-
tines. Pr_input passes data up (towards the user) and pr_output passes it down (towards the network); con-
trol information passes up and down on pr_ctlinput and pr_ctloutput. The protocol is responsible for the
space occupied by any the arguments to these entries and must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.
The pr_flags fi eld is constructed from the following values:

#define PR_ATOMIC 0x01 /* exchange atomic messages only */
#define PR_ADDR 0x02 /* addresses given with messages */
#define PR_CONNREQUIRED 0x04 /* connection required by protocol */
#define PR_WANTRCVD 0x08 /* want PRU_RCVD calls*/
#define PR_RIGHTS 0x10 /* passes capabilities*/

Protocols which are connection-based specify the PR_CONNREQUIRED fbg so that the socket routines

will never attempt to send data before a connection has been established. If the PR_WANTRCVD flg is

set, the socket routines will notfi y the protocol when the user has removed data from the socket’s receive
gueue. This allows the protocol to implement acknowledgement on user receipt, and also update window-

ing information based on the amount of space available in the receive queue. The PR_ADDR fi eld indi-
cates any data placed in the socket’s receive queue will be preceded by the address of the sender. The
PR_ATOMIC flag specifi es each user request to send data must be performed in a single protocol send
request; it is the protocol’s responsibility to maintain record boundaries on data to be sent. The
PR_RIGHTS flg indicates the protocol supports the passing of capabilities; thisis currently used only the

protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an appropriate proto-
col to support the type of socket being created. The pr_type fi eld contains one of the possible socket types
(e.g. SOCK_STREAM), while the pr_family fi eld indicates which protocol family the protocol belongs to.
The pr_protocol fi eld contains the protocol number of the protocol, normally awell known value.

6.3. Network-interface layer

Each network-interface confi gured into a system defi nes a path through which packets may be sent
and received. Normally a hardware device is associated with this interface, though there is no requirement
for this (for example, all systems have a software *‘loopback” interface used for debugging and perfor-
mance analysis). In addition to manipulating the hardware device, an interface module is responsible for
encapsulation and deencapsulation of any low level header information required to deliver amessage to it's
destination. The selection of which interface to use in delivering packets is arouting decision carried out at
a higher level than the network-interface layer. Each interface normally identifi es itself at boot time to the
routing module so that it may be selected for packet delivery.

An interface is defi ned by the following structure,

CSRG TR/6 Leffler, et. al.

struct ifnet {

char *if_name; /* name, e.g. ““‘en” or ‘10" */
short if _unit; /* sub-unit for lower level driver */
short if_ mtu; /* maximum transmission unit */
int if _net; /* network number of interface */
short if flgs; [* up/down, broadcast, etc. */
short if _timer; /* time'til if_watchdog called */
int if _host[2]; /* local net host number */
struct sockaddr if _addr; /* address of interface */
union {

struct sockaddr ifu_broadaddr;

struct sockaddr ifu_dstaddr;
} if_ifu;
struct ifqueueif_snd; [* output queue */
int (*if_init)(); /* init routine */
int (*if_output)(); /* output routine */
int (*if_ioctl)(); * ioctl routine */
int (*if_reset)(); /* bus reset routine */
int (*if_watchdog)(); ~ /* timer routine */
int if ipackets; [* packets received on interface */
int if ierrors; /* input errors on interface */
int if opackets; [* packets sent on interface */
int if_oerrors, /* output errors on interface */
int if _collisions; /* collisions on csmainterfaces */
struct ifnet *if _next;

1

Each interface has a send queue and routines used for initialization, if_init, and output, if_output. If
the interface resides on a system bus, the routine if_reset will be called after a bus reset has been performed.
An interface may also specify atimer routine, if_watchdog, which should be called every if timer seconds
(if non-zero).

The state of an interface and certain characteristics are stored in the if_flags fi eld. The following val-
ues are possible:

#define IFF_UP 0x1 [* interfaceisup */

#define IFF_BROADCAST 0x2 [* broadcast address valid */
#define IFF_DEBUG 0x4 /* turn on debugging */

#define IFF_ROUTE 0x8 [* routing entry installed */
#define IFF_POINTOPOINT 0x10 /* interfaceis point-to-point link */
#define IFF_NOTRAILERS 0x20 /* avoid use of trailers*/

#define IFF_RUNNING 0x40 /* resources alocated */

#define IFF_NOARP 0x80 /* no address resolution protocol */

If the interface is connected to a network which supports transmission of broadcast packets, the
IFF_BROADCAST flag will be set and the if_broadaddr fi eld will contain the address to be used in sending
or accepting a broadcast packet. If the interface is associated with a point to point hardware link (for exam-
ple, a DEC DMR-11), the IFF_POINTOPOINT flag will be set and if_dstaddr will contain the address of
the host on the other side of the connection. These addresses and the local address of the interface, if_addr,
are used in fi ltering incoming packets. The interface sets IFF_RUNNING after it has allocated system
resources and posted an initial read on the device it manages. This state bit is used to avoid multiple alloca-
tion requests when an interface’s address is changed. The IFF_NOTRAILERS flg indicates the interface
should refrain from using a trailer encapsulation on outgoing packets; trailer protocols are described in
section 14. The IFF_NOARP flkg indicates the interface should not use an ** address resolution protocol”’
in mapping internetwork addressesto local network addresses.

CSRG TR/6 Leffler, et. al.

The information stored in an ifnet structure for point to point communication devices is not currently
used by the system internally. Rather, it is used by the user level routing process in determining host net-
work connections and in initially devising routes (refer to chapter 10 for more information).

Various statistics are also stored in the interface structure. These may be viewed by users using the
netstat(1) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS ioctls.
SIOCSIFADDR is used to initially define each interface’s address; SIOGSIFFLAGS can be used to mark an
interface down and perform site-specific configuration.

6.3.1. UNIBUS interfaces

All hardware related interfaces currently reside on the UNIBUS. Consequently a common set of util-
ity routines for dealing with the UNIBUS has been developed. Each UNIBUS interface utilizes a structure
of the following form:

struct ifuba {

short ifu_uban; /* uba number */
short ifu_hlen; /* local net header length */
struct uba_regs *ifu_uba; /* uba regs, in vm */
struct ifrw {
caddr_t ifrw_addr; /* virt addr of header */
int ifrw_bdp; /* unibus bdp */
int ifrw_info; /* value from ubaalloc */
int ifrw_proto; /* map register prototype */
struct pte *ifrw_mr; /* base of map registers */
} ifu_r, ifu_w;
struct pte ifu_wmap[IF_MAXNUBAMRY];/* base pages for output */
short ifu_xswapd; /* mask of clusters swapped */
short ifu_flags; /* used during uballoc’s */
struct mbuf *ifu_xtofree; /* pages being dma’d out */

j2

The if_uba structure describes UNIBUS resources held by an interface. IF_NUBAMR map registers
are held for datagram data, starting at ifr_mr. UNIBUS map register ifr_mr[-1] maps the local network
header ending on a page boundary. UNIBUS data paths are reserved for read and for write, given by
ifr_bdp. The prototype of the map registers for read and for write is saved in ifr_proto.

When write transfers are not full pages on page boundaries the data is just copied into the pages
mapped on the UNIBUS and the transfer is started. If a write transfer is of a (1024 byte) page size and on a
page boundary, UNIBUS page table entries are swapped to reference the pages, and then the initial pages
are remapped from ifu_wmap when the transfer completes.

When read transfers give whole pages of data to be input, page frames are allocated from a network
page list and traded with the pages already containing the data, mapping the allocated pages to replace the
input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers, all use the
ifuba structure described above.

if_ubainit(ifu, uban, hlen, nmr);
if_ubainit allocates resources on UNIBUS adaptor uban and stores the resultant information in the
ifuba structure pointed to by ifu. It is called only at boot time or after a UNIBUS reset. Two data
paths (buffered or unbuffered, depending on the ifu_flags field) are allocated, one for reading and one
for writing. The nmr parameter indicates the number of UNIBUS mapping registers required to map
a maximal sized packet onto the UNIBUS, while hlen specifies the size of a local network header, if
any, which should be mapped separately from the data (see the description of trailer protocols in
chapter 14). Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize
the input data path for an initial read. For the output data path, mapping registers and pages of

CSRG TR/6 Lefiler, et. al.

memory are aso allocated and mapped onto the UNIBUS. The pages associated with the output data
path are held in reserve in the event a write requires copying non-page-aligned data (see if wubaput
below). If if _ubainit is called with resources already allocated, they will be used instead of allocating
new ones (this normally occurs after a UNIBUS reset). A 1 is returned when allocation and initial-
ization is successful, O otherwise.

m = if_rubaget(ifu, totlen, off0);
if rubaget pulls read data off an interface. totlen specifi es the length of data to be obtained, not
counting the local network header. If off0 is non-zero, it indicates a byte offset to atrailing local net-
work header which should be copied into a separate mbuf and prepended to the front of the resultant
mbuf chain. When page sized units of data are present and are page-aligned, the previously mapped
data pages are remapped into the mbufs and swapped with fresh pages; thus avoiding any copying. A
0 return value indicates a failure to allocate resources.

if_wubaput(ifu, m);
if wubaput maps a chain of mbufs onto a network interface in preparation for output. The chain
includes any local network header, which is copied so that it resides in the mapped and aligned 1/0
space. Any other mbufs which contained non page sized data portions are also copied to the 1/0
space. Pages mapped from a previous output operation (ho longer needed) are unmapped and
returned to the network page pool.

CSRG TR/6 Leffler, et. al.

7. Socket/protocol interface

The interface between the socket routines and the communication protocols is through the pr_usrreq
routine defi ned in the protocol switch table. The following requests to a protocol module are possible:

#define PRU_ATTACH 0 [* attach protocol */

#define PRU_DETACH 1 [* detach protocol */

#define PRU_BIND 2 /* bind socket to address */
#define PRU_LISTEN 3 [* listen for connection */

#define PRU_CONNECT 4 [* establish connection to peer */
#define PRU_ACCEPT 5 [* accept connection from peer */
#define PRU_DISCONNECT 6 [* disconnect from peer */

#define PRU_SHUTDOWN 7 /* won't send any more data */
#define PRU_RCVD 8 [* have taken data; more room now */
#define PRU_SEND 9 * send this data*/

#define PRU_ABORT 10 [* abort (fast DISCONNECT, DETATCH) */
#define PRU_CONTROL 11 [* control operations on protocol */
#define PRU_SENSE 12 [* return statusinto m */

#define PRU_RCVOOB 13 [* retrieve out of band data */
#define PRU_SENDOOB 14 * send out of band data*/
#define PRU_SOCKADDR 15 [* fetch socket’s address */
#define PRU_PEERADDR 16 [* fetch peer’'s address */

#define PRU_CONNECT?2 17 [* connect two sockets */

/* begin for protocolsinternal use */

#define PRU_FASTTIMO 18 * 200ms timeout */

#define PRU_SLOWTIMO 19 /* 500ms timeout */

#define PRU_PROTORCV 20 [* receive from below */

#define PRU_PROTOSEND 21 /* send to below */
A call on the user request routineis of the form,

error = (* protosw([].pr_usrreq)(up, reg, m, addr, rights);
int error; struct socket *up; int req; struct mbuf *m, *rights; caddr_t addr;

The mbuf chain, m, and the address are optional parameters. The rights parameter is an optional pointer to
an mbuf chain containing user specifi ed capabilities (see the sendmsg and recvmsg system calls). The pro-
tocol is responsible for disposal of both mbuf chains. A non-zero return value gives a UNIX error number
which should be passed to higher level software. The following paragraphs describe each of the requests
possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socket system call) the protocol module is called with
this request. It is the responsibility of the protocol module to allocate any resources necessary. The
“attach” request will always precede any of the other requests, and should not occur more than once.
PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted. The protocol
module may deallocate any resources assigned to the socket.
PRU_BIND
When a socket is initially created it has no address bound to it. This request indicates an address
should be bound to an existing socket. The protocol module must verify the requested address is
valid and available for use.
PRU_LISTEN
The *listen’”” request indicates the user wishes to listen for incoming connection requests on the asso-
ciated socket. The protocol module should perform any state changes needed to carry out this
request (if possible). A “listen” request always precedes a request to accept a connection.
PRU_CONNECT
The **connect”” request indicates the user wants to a establish an association. The addr parameter

CSRG TR/6 Leffler, et. al.

supplied describes the peer to be connected to. The effect of a connect request may vary depending
on the protocol. Virtua circuit protocols, such as TCP [Postel80b], use this request to initiate estab-
lishment of a TCP connection. Datagram protocols, such as UDP [Postel 79], simply record the
peer’s address in a private data structure and use it to tag all outgoing packets. There are no restric-
tions on how many times a connect request may be used after an attach. If a protocol supports the
notion of multi-casting, it is possible to use multiple connects to establish a multi-cast group. Alter-
natively, an association may be broken by a PRU_DISCONNECT request, and a new association cre-
ated with a subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT

PRU_|

Following a successful PRU_LISTEN request and the arrival of one or more connections, this request
is made to indicate the user has accepted the fi rst connection on the queue of pending connections.
The protocol module should fi Il in the supplied address buffer with the address of the connected
party.

DISCONNECT

Eliminate an association created with a PRU_CONNECT reguest.

PRU_SHUTDOWN

PRU_|

This call is used to indicate no more data will be sent and/or received (the addr parameter indicates
the direction of the shutdown, as encoded in the soshutdown system call). The protocol may, at its
discretion, deallocate any data structures related to the shutdown.

RCVD

This request is made only if the protocol entry in the protocol switch table includes the PR_WANTR-
CVD fleg. When a user removes data from the receive queue this request will be sent to the protocol
module. 1t may be used to trigger acknowledgements, refresh windowing information, initiate data
transfer, etc.

PRU_SEND

Each user request to send data is translated into one or more PRU_SEND requests (a protocol may
indicate a single user send request must be trandated into a single PRU_SEND request by specifying
the PR_ATOMIC flg in its protocol description). The data to be sent is presented to the protocol as
alist of mbufs and an address is, optionally, supplied in the addr parameter. The protocol is respon-
sible for preserving the data in the socket’s send queue if it is not able to send it immediately, or if it
may need it at some later time (e.g. for retransmission).

PRU_ABORT

This regquest indicates an abnormal termination of service. The protocol should delete any existing
association(s).

PRU_CONTROL

The *control” reguest is generated when a user performs a UNIX ioctl system call on a socket (and
the ioctl is not intercepted by the socket routines). It allows protocol-specifi ¢ operations to be pro-
vided outside the scope of the common socket interface. The addr parameter contains a pointer to a
static kernel data area where relevant information may be obtained or returned. The m parameter
contains the actual ioctl request code (note the non-standard calling convention).

PRU_SENSE

The "“sense” request is generated when the user makes an fstat system call on a socket; it requests
status of the associated socket. There currently is no common format for the status returned. Infor-
mation which might be returned includes per-connection statistics, protocol state, resources currently
in use by the connection, the optimal transfer size for the connection (based on windowing informa-
tion and maximum packet size). The addr parameter contains a pointer to a static kernel data area
where the status buffer should be placed.

PRU_RCVOOB

Any “out-of-band” data presently available is to be returned. An mbuf is passed in to the protocol
module and the protocol should either place datain the mbuf or attach new mbufs to the one supplied
if there isinsuffi cient space in the single mbuf.

CSRG TR/6 Leffler, et. al.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The address format
(protocol specifi c) is returned in the addr parameter.

PRU_PEERADDR

The address of the peer to which the socket is connected is returned. The socket must be in a

SS ISCONNECTED state for this request to be made to the protocol. The address format (protocol

specifi ¢) isreturned in the addr parameter.
PRU_CONNECT?2

The protocol moduleis supplied two sockets and requested to establish a connection between the two

without binding any addresses, if possible. Thiscall is used in implementing the system call.

The following requests are used internally by the protocol modules and are never generated by the
socket routines. In certain instances, they are handed to the pr_usrreq routine solely for convenience in
tracing a protocol’s operation (e.g. PRU_SLOWTIMO).

PRU_FASTTIMO

A “fast timeout” has occured. This request is made when atimeout occurs in the protocol’s pr_fas-

timo routine. The addr parameter indicates which timer expired.
PRU_SLOWTIMO

A “dlow timeout” has occured. This request is made when a timeout occurs in the protocol’s

pr_slowtimo routine. The addr parameter indicates which timer expired.
PRU_PROTORCV

This request is used in the protocol-protocol interface, not by the routines. It requests reception of

data destined for the protocol and not the user. No protocols currently use this facility.
PRU_PROTOSEND

This request allows a protocol to send data destined for another protocol module, not a user. The

details of how data is marked *‘ addressed to protocol” instead of *‘addressed to user’ are left to the
protocol modules. No protocols currently use this facility.

CSRG TR/6 Leffler, et. al.

8. Protocol/protocol interface

The interface between protocol modules is through the pr_usrreq, pr_input, pr_output, pr_ctlinput,
and pr_ctloutput routines. The calling conventions for all but the pr_usrreq routine are expected to be spe-
cifi ¢ to the protocol modules and are not guaranteed to be consistent across protocol families. We will
examine the conventions used for some of the Internet protocols in this section as an example.

8.1. pr_output
The Internet protocol UDP uses the convention,

error = udp_output(inp, m);
int error; struct inpcb *inp; struct mbuf *m;

where the inp, “internet protocol control block™, passed between modules conveys per connection state

information, and the mbuf chain contains the data to be sent. UDP performs consistency checks, appends
its header, calculates a checksum, etc. before passing the packet on to the IP module:

error = ip_output(m, opt, ro, allowbroadcast);
int error; struct mbuf *m, *opt; struct route *ro; int allowbroadcast;

The call to IP's output routine is more complicated than that for UDP, as befi ts the additional work
the IP module must do. The m parameter is the data to be sent, and the opt parameter is an optional list of
I P options which should be placed in the IP packet header. The ro parameter is is used in making routing
decisions (and passing them back to the caller). The fi nal parameter, allowbroadcast is a feg indicating if
the user is allowed to transmit a broadcast packet. This may be inconsequentia if the underlying hardware
does not support the notion of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occured which could be
immediately detected (no buffer space available, no route to destination, etc.).

8.2. pr_input
Both UDP and TCP use the following calling convention,
(void) (*protosw[].pr_input)(m);
struct mbuf *m;
Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a VAX software interrupt level routine, and so is not called with any parame-
ters. It instead communicates with network interfaces through a queue, ipintrg, which isidentical in struc-
ture to the queues used by the network interfaces for storing packets awaiting transmission.

8.3. pr_ctlinput

This routine is used to convey ‘“control” information to a protocol module (i.e. information which
might be passed to the user, but is not data). This routine, and the pr_ctloutput routine, have not been
extensively developed, and thus suffer from a *clumsiness’ that can only be improved as more demands
are placed onit.

The common calling convention for thisroutine is,

(void) (*protosw[].pr_ctlinput)(reg, info);
int req; caddr_t info;

Thereq parameter is one of the following,

CSRG TR/6 Leffler, et. al.

#define PRC_IFDOWN 0 [* interface transition */
#define PRC_ROUTEDEAD 1 [* select new routeif possible */
#define PRC_QUENCH 4 [* some said to slow down */
#define PRC_HOSTDEAD 6 /* normally from IMP */
#define PRC_HOSTUNREACH 7 [* ditto */

#define PRC_UNREACH_NET 8 /* no route to network */
#define PRC_UNREACH_HOST 9 /* no route to host */

#define PRC_UNREACH_PROTOCOL 10 [* dst says bad protocol */
#define PRC_UNREACH_PORT 11 [* bad port #*/

#define PRC_MSGSIZE 12 [* message size forced drop */
#define PRC_REDIRECT _NET 13 /* net routing redirect */
#define PRC_REDIRECT _HOST 14 * host routing redirect */
#define PRC_TIMXCEED_INTRANS 17 [* packet lifetime expired in transit */
#define PRC_TIMXCEED REASS 18 /* lifetime expired on reass q */
#define PRC_PARAMPROB 19 [* header incorrect */

while the info parameter isa‘‘ catchall” value which is request dependent. Many of the requests have obvi-
ously been derived from ICMP (the Internet Control Message Protocol), and from error messages defi ned in
the 1822 host/IMP convention [BBN78]. Mapping tables exist to convert control requests to UNIX error
codes which are delivered to a user.

8.4. pr_ctloutput
Thisroutineis not currently used by any protocol modules.

CSRG TR/6 Leffler, et. al.

9. Protocol/networ k-interface interface

The lowest layer in the set of protocols which comprise a protocol family must interface itself to one
or more network interfaces in order to transmit and receive packets. It is assumed that any routing deci-
sions have been made before handing a packet to a network interface, in fact this is absolutely necessary in
order to locate any interface at all (unless, of course, one uses a single ‘‘hardwired” interface). There are
two cases to be concerned with, transmission of a packet, and receipt of a packet; each will be considered
Separately.

9.1. Packet transmission

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it transmits a fully formatted
packet with the following call,

error = (*ifp->if_output)(ifp, m, dst)
int error; struct ifnet *ifp; struct mbuf *m; struct sockaddr * dst;

The output routine for the network interface transmits the packet m to the dst address, or returns an error
indication (a UNIX error number). In reality transmission may not be immediate, or successful; normally
the output routine simply queues the packet on its send queue and primes an interrupt driven routine to
actually transmit the packet. For unreliable mediums, such as the Ethernet, ** successful”” transmission sim-
ply means the packet has been placed on the cable without a collision. On the other hand, an 1822 interface
guarantees proper delivery or an error indication for each message transmitted. The model employed in the
networking system attaches no promises of delivery to the packets handed to a network interface, and thus
corresponds more closely to the Ethernet. Errors returned by the output routine are normally trivial in
nature (no buffer space, address format not handled, etc.).

9.2. Packet reception

Each protocol family must have one or more “lowest level” protocols. These protocols deal with
internetwork addressing and are responsible for the delivery of incoming packets to the proper protocol pro-
cessing modules. In the PUP model [Boggs78] these protocols are termed Level 1 protocols, in the ISO
model, network layer protocols. In our system each such protocol module has an input packet queue
assigned to it. Incoming packets received by a network interface are queued up for the protocol module and
aVAX software interrupt is posted to initiate processing.

Three macros are available for queueing and degueueing packets,
IF_ENQUEUE(ifg, m)

This places the packet m at the tail of the queueifq.
IF_DEQUEUE(ifg, m)

This places a pointer to the packet at the head of queueifgin m. A zero value will be returned in mif

the queue is empty.
IF_PREPEND(ifqg, m)

This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple form of congestion control. The
macro |F_QFULL(ifq) returns 1 if the queue is fi lled, in which case the macro IF_DROP(ifg) should be
used to bump a count of the number of packets dropped and the offending packet dropped. For example,
the following code fragment is commonly found in a network interface’s input routine,

if (IF_QFULL(ing)) {
IF_DROP(ing);
m_freem(m);

} else
IF_ENQUEUE(ing, m);

CSRG TR/6 Leffler, et. al.

10. Gateways and routing issues

The system has been designed with the expectation that it will be used in an internetwork environ-
ment. The *“canonical” environment was envisioned to be a collection of local area networks connected at
one or more points through hosts with multiple network interfaces (one on each local area network), and
possibly a connection to along haul network (for example, the ARPANET). In such an environment, issues
of gatewaying and packet routing become very important. Certain of these issues, such as congestion con-
trol, have been handled in a simplistic manner or specifi cally not addressed. Instead, where possible, the
network system attempts to provide simple mechanisms upon which more involved policies may be imple-
mented. As some of these problems become better understood, the solutions developed will be incorpo-
rated into the system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms pro-
vided for congestion control are described in chapter 12.

10.1. Routing tables

The network system maintains a set of routing tables for selecting a network interface to use in deliv-
ering a packet to its destination. These tables are of the form:

struct rtentry {

u_long rt_hash; /* hash key for lookups */

struct sockaddr rt_dst; /* destination net or host */

struct sockaddr rt_gateway; /* forwarding agent */

short rt_flegs; * see below */

short rt_refent; /* no. of references to structure */
u_long rt_use; /* packets sent using route */
struct ifnet *rt_ifp; [* interface to give packet to */

1

The routing information is organized in two separate tables, one for routes to a host and one for
routes to a network. The distinction between hosts and networks is necessary so that a single mechanism
may be used for both broadcast and multi-drop type networks, and aso for networks built from point-to-
point links (e.g DECnet [DEC80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by rou-
tines defi ned for each address family; one based on the destination being a host, and one assuming the tar-
get is the network portion of the address. Each hash value is used to locate a hash chain to search (by tak-
ing the value modulo the hash table size) and the entire 32-bit value is then used as a key in scanning the
list of routes. Lookups are applied fi rst to the routing table for hosts, then to the routing table for networks.
If both lookups fail, a fi nal lookup is made for a *“wildcard” route (by convention, network 0). By doing
this, routes to a specifi ¢ host on a network may be present as well as routes to the network. This also allows
a‘‘fall back” network route to be defi ned to an “smart” gateway which may then perform more intelligent
routing.

Each routing table entry contains a destination (who's at the other end of the route), a gateway to
send the packet to, and various flags which indicate the route’s status and type (host or network). A count
of the number of packets sent using the route is kept for use in deciding between multiple routes to the
same destination (see below), and a count of ““held references” to the dynamically alocated structure is
maintained to insure memory reclamation occurs only when the route is not in use. Finally a pointer to the
anetwork interface is kept; packets sent using the route should be handed to thisinterface.

Routes are typed in two ways: either as host or network, and as *‘direct’” or *‘indirect”. The host/net-
work distinction determines how to compare the rt_dst fi eld during lookup. If the route is to a network,
only a packet’s destination network is compared to the rt_dst entry stored in the table. If the route isto a
host, the addresses must match bit for bit.

The distinction between **direct” and *indirect” routes indicates whether the destination is directly
connected to the source. This is needed when performing local network encapsulation. If a packet is des-
tined for a peer at a host or network which is not directly connected to the source, the internetwork packet

CSRG TR/6 Leffler, et. al.

header will indicate the address of the eventual destination, while the local network header will indicate the
address of the intervening gateway. Should the destination be directly connected, these addresses are likely
to be identical, or a mapping between the two exists. The RTF_GATEWAY flg indicates the route is to an
“indirect” gateway agent and the local network header should be fi lled in from the rt_gateway fi eld instead
of rt_dst, or from the internetwork destination address.

It is assumed multiple routes to the same destination will not be present unless they are deemed equal
in cost (the current routing policy process never installs multiple routes to the same destination). However,
should multiple routes to the same destination exist, a request for a route will return the *‘least used” route
based on the total number of packets sent along this route. This can result in a **ping-pong” effect (alter-
nate packets taking aternate routes), unless protocols ‘‘hold onto” routes until they no longer fi nd them
useful; either because the destination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table entries as
well as dynamically create new routing table entries. On hosts where exhaustive routing information is too
expensive to maintain (e.g. work stations), the combination of wildcard routing entries and routing redirect
messages can be used to provide a simple routing management scheme without the use of a higher level
policy process. Statistics are kept by the routing table routines on the use of routing redirect messages and
their affect on the routing tables. These statistics may be viewed using

Status information other than routing redirect control messages may be used in the future, but at
present they areignored. Likewise, moreintelligent ““metrics’ may be used to describe routesin the future,
possibly based on bandwidth and monetary costs.

10.2. Routing tableinterface

A protocol accesses the routing tables through three routines, one to alocate a route, one to free a
route, and one to process a routing redirect control message. The routine rtalloc performs route allocation;
it is called with a pointer to the following structure,

struct route {
struct rtentry *ro_rt;
struct sockaddr ro_dst;
b
The route returned is assumed ““held” by the caller until disposed of with an rtfree call. Protocols which
implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit’s lifetime, while
connection-less protocols, such as UDP, currently allocate and free routes on each transmission.

The routine rtredirect is called to process a routing redirect control message. It is called with a desti-
nation address and the new gateway to that destination. If anon-wildcard route exists to the destination, the
gateway entry in the route is modifi ed to point at the new gateway supplied. Otherwise, a new routing table
entry is inserted reflecting the information supplied. Routes to interfaces and routes to gateways which are
not directly accesible from the host are ignored.

10.3. User leve routing policies

Routing policies implemented in user processes manipulate the kernel routing tables through two
ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries, respectively; the
tables are read through the /dev/ikmem device. The decision to place policy decisions in a user process
implies routing table updates may lag a bit behind the identifi cation of new routes, or the failure of existing
routes, but this period of instability is normally very small with proper implementation of the routing pro-
cess. Advisory information, such as ICMP error messages and |M P diagnostic messages, may be read from
raw sockets (described in the next section).

One routing policy process has already been implemented. The system standard “ routing daemon”
uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up to date routing
tablesin our local environment. Interaction with other existing routing protocols, such as the Internet GGP
(Gateway-Gateway Protocol), may be accomplished using a similar process.

CSRG TR/6 Leffler, et. al.

11. Raw sockets

A raw socket is a mechanism which allows users direct access to alower level protocol. Raw sockets
are intended for knowledgeable processes which wish to take advantage of some protocol feature not
directly accessible through the normal interface, or for the development of new protocols built atop existing
lower level protocols. For example, a new version of TCP might be developed at the user level by utilizing
araw |P socket for delivery of packets. The raw IP socket interface attempts to provide an identical inter-
face to the one a protocol would have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly) augmented by
protocol-specifi ¢ processing routines. This section will describe the core of the raw socket interface.

11.1. Control blocks
Every raw socket has a protocol control block of the following form,

struct rawchb {

struct rawchb *rch_next; /* doubly linked list */
struct rawch *rcb_prev;

struct socket *rch_socket; [* back pointer to socket */
struct sockaddr rcb_faddr; /* destination address */
struct sockaddr rcb_laddr; /* socket’s address */
caddr_t rchb_pch; [* protocol specifi ¢ stuff */
short rcb_flags;

H
All the control blocks are kept on a doubly linked list for performing lookups during packet dispatch.
Associations may be recorded in the control block and used by the output routine in preparing packets for
transmission. The addresses are also used to fi lter packets on input; this will be described in more detail
shortly. If any protocol specifi ¢ information is required, it may be attached to the control block using the
rcb_pchb fi eld.

A raw socket interface is datagram oriented. That is, each send or receive on the socket requires a
destination address. This address may be supplied by the user or stored in the control block and automati-
caly installed in the outgoing packet by the output routine. Sinceit is not possible to determine whether an
address is present or not in the control block, two fags, RAW_LADDR and RAW_FADDR, indicate if a
local and foreign address are present. Another fle)g, RAW_DONTROUTE, indicates if routing should be
performed on outgoing packets. If it is, a route is expected to be allocated for each “new’ destination
address. That is, the fi rst time a packet is transmitted a route is determined, and thereafter each time the
destination address stored in rcb_route differs from rch_faddr, or rch_routero_rt is zero, the old route is
discarded and a new one alocated.

11.2. Input processing

Input packets are **assigned”’ to raw sockets based on a simple pattern matching scheme. Each net-
work interface or protocol gives packets to the raw input routine with the call:

raw_input(m, proto, src, dst)
struct mbuf *m; struct sockproto * proto, struct sockaddr * src, * dst;

The data packet then has a generic header prepended to it of the form
struct raw_header {

struct sockproto raw_proto;
struct sockaddr raw_dst;
struct sockaddr raw_src;

b
and it is placed in a packet queue for the *‘raw input protocol” module. Packets taken from this queue are
copied into any raw sockets that match the header according to the following rules,

CSRG TR/6 Leffler, et. al.

1)
2)
3)

4)

The protocol family of the socket and header agree.
If the protocol number in the socket is non-zero, then it agrees with that found in the packet header.

If alocal address is defi ned for the socket, the address format of the local address is the same as the
destination address's and the two addresses agree bit for bit.

The rules of 3) are applied to the socket’s foreign address and the packet’s source address.

A basic assumption is that addresses present in the control block and packet header (as constructed by the
network interface and any raw input protocol module) are in a canonical form which may be ““block com-
pared” .

11.3. Output processing

On output the raw pr_usrreq routine passes the packet and raw control block to the raw protocol out-

put routine for any processing required before it is delivered to the appropriate network interface. The out-
put routine is normally the only code required to implement a raw socket interface.

CSRG TR/6 Leffler, et. al.

12. Buffering and congestion control

One of the mgjor factors in the performance of a protocol is the buffering policy used. Lack of a
proper buffering policy can force packets to be dropped, cause falsifi ed windowing information to be emit-
ted by protocols, fragment host memory, degrade the overall host performance, etc. Due to problems such
as these, most systems allocate a fi xed pool of memory to the networking system and impose a policy opti-
mized for *‘normal’” network operation.

The networking system developed for UNIX is little different in this respect. At boot time a fi xed
amount of memory is alocated by the networking system. At later times more system memory may be
requested as the need arises, but at no time is memory ever returned to the system. It is possible to garbage
collect memory from the network, but diffi cult. In order to perform this garbage collection properly, some
portion of the network will have to be **turned off” as data structures are updated. The interval over which
this occurs must kept small compared to the average inter-packet arrival time, or too much traffi c may be
lost, impacting other hosts on the network, as well as increasing load on the interconnecting mediums. In
our environment we have not experienced a need for such compaction, and thus have left the problem unre-
solved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given of
the allocation mechanisms, and policies used by the protocols in performing connection level buffering.

12.1. Memory management

The basic memory alocation routines place no restrictions on the amount of space which may be
allocated. Any request made is fi lled until the system memory allocator starts refusing to allocate addi-
tional memory. When the current quota of memory is insuffi cient to satisfy an mbuf allocation request, the
allocator requests enough new pages from the system to satisfy the current request only. All memory
owned by the network is described by a private page table used in remapping pages to be logically contigu-
ous as the need arises. In addition, an array of reference counts parallels the page table and is used when
multiple copies of a page are present.

Mbufs are 128 byte structures, 8 fi tting in a 1Kbyte page of memory. When datais placed in mbufs,
if possible, it is copied or remapped into logically contiguous pages of memory from the network page
pool. Datasmaller than the size of a pageis copied into one or more 112 byte mbuf data areas.

12.2. Protocol buffering policies

Protocols reserve fi xed amounts of buffering for send and receive queues at socket creation time.
These amounts defi ne the high and low water marks used by the socket routines in deciding when to block
and unblock a process. The reservation of space does not currently result in any action by the memory
management routines, though it is clear if one imposed an upper bound on the total amount of physical
memory allocated to the network, reserving memory would become important.

Protocols which provide connection level fbow control do this based on the amount of space in the
associated socket queues. That is, send windows are calculated based on the amount of free space in the
socket’s receive queue, while receive windows are adjusted based on the amount of data awaiting transmis-
sion in the send queue. Care has been taken to avoid the *silly window syndrome” described in [Clark82]
at both the sending and receiving ends.

12.3. Queuelimiting

Incoming packets from the network are always received unless memory allocation fails. However,
each Level 1 protocol input queue has an upper bound on the queue’s length, and any packets exceeding
that bound are discarded. It is possible for a host to be overwhelmed by excessive network traffi ¢ (for
instance a host acting as a gateway from a high bandwidth network to a low bandwidth network). As a
“defensive’” mechanism the queue limits may be adjusted to throttle network traffi ¢ load on a host. Con-
sider ahost willing to devote some percentage of its machine to handling network traffi c. If the cost of han-
dling an incoming packet can be calculated so that an acceptable ** packet handling rate”” can be determined,
then input queue lengths may be dynamically adjusted based on a host’s network load and the number of
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a problem such

CSRG TR/6 L effler, et. al.

as this (simply dropping packets is likely to increase the load on a network); the queue lengths were incor-
porated mainly as a safeguard mechanism.

12.4. Packet forwarding

When packets can not be forwarded because of memory limitations, the system generates a ** source
guench” message. In addition, any other problems encountered during packet forwarding are also refected
back to the sender in the form of ICMP packets. This helps hosts avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of net-
work development, broadcast packets were forwarded and a *routing loop™ resulted in network saturation
and every host on the network crashing.

CSRG TR/6 Leffler, et. al.

13. Out of band data

Out of band data is a facility peculiar to the stream socket abstraction defi ned. Little agreement
appears to exist as to what its semantics should be. TCP defi nes the notion of *‘urgent data’ as in-line,
while the NBS protocols [Burruss81] and numerous others provide a fully independent logical transmission
channel along which out of band data is to be sent. In addition, the amount of the data which may be sent
as an out of band message varies from protocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket’s notion of out of band data has been defi ned as the lowest reasonable common
denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band data is
expected to be transmitted out of the normal sequencing and flow control constraints of the data stream. A
minimum of 1 byte of out of band data and one outstanding out of band message are expected to be sup-
ported by the protocol supporting a stream socket. It is a protocols perogative to support larger sized mes-
sages, or more than one outstanding out of band message at atime.

Out of band datais maintained by the protocol and usually not stored in the socket’s send queue. The
PRU_SENDOOB and PRU_RCVOOB requests to the pr_usrreq routine are used in sending and receiving
data

CSRG TR/6 Leffler, et. al.

14. Trailer protocols

Core to core copies can be expensive. Consequently, a great deal of effort was spent in minimizing
such operations. The VAX architecture provides virtual memory hardware organized in page units. To cut
down on copy operations, data is kept in page sized units on page-aligned boundaries whenever possible.
This alows data to be moved in memory simply by remapping the page instead of copying. The mbuf and
network interface routines perform page table manipulations where needed, hiding the complexities of the
VAX virtual memory hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware interface). When
data is copied from the user’s address space into the system it is deposited in pages (if suffi cient data is
present to fi Il an entire page). This encourages the user to transmit information in messages which are a
multiple of the system page size.

Unfortunately, performing a similar operation when taking data from the network is very diffi cult.
Consider the format of an incoming packet. A packet usually contains a local network header followed by
one or more headers used by the high level protocols. Finaly, the data, if any, follows these headers. Since
the header information may be variable length, DMA’ing the eventual data for the user into a page aligned
area of memory isimpossible without a priori knowledge of the format (e.g. supporting only a single proto-
col header format).

To alow variable length header information to be present and still ensure page alignment of data, a
special local network encapsulation may be used. This encapsulation, termed atrailer protocol, places the
variable length header information after the data. A fi xed size local network header is then prepended to
the resultant packet. The local network header contains the size of the data portion, and anew trailer proto-
col header, inserted before the variable length information, contains the size of the variable length header
information. The following trailer protocol header is used to store information regarding the variable
length protocol header:

struct {
short protocol; /* original protocol no. */
short length; [* length of trailer */

H

The processing of thetrailer protocol isvery simple. On output, the local network header indicates a
trailer encapsulation is being used. The protocol identifi er also includes an indication of the number of data
pages present (before the trailer protocol header). The trailer protocol header is initialized to contain the
actual protocol and variable length header size, and appended to the data along with the variable length
header information.

On input, the interface routines identify the trailer encapsulation by the protocol type stored in the
local network header, then calculate the number of pages of data to fi nd the beginning of the trailer. The
trailing information is copied into a separate mbuf and linked to the front of the resultant packet.

Clearly, trailer protocols require cooperation between source and destination. In addition, they are
normally cost effective only when sizable packets are used. The current scheme works because the local
network encapsulation header is a fi xed size, allowing DMA operations to be performed at a known offset
from the fi rst data page being received. Should the local network header be variable length this scheme
fails.

Statistics collected indicate as much as 200Kb/s can be gained by using a trailer protocol with
1K byte packets. The average size of the variable length header was 40 bytes (the size of a minimal TCP/IP
packet header). If hardware supports larger sized packets, even greater gains may be realized.

CSRG TR/6 Leffler, et. al.

Acknowledgements

The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79], while in
certain places the Internet protocol family has had a great deal of influence in the design. The use of soft-
ware interrupts for process invocation is based on similar facilities found in the VMS operating system.
Many of the ideas related to protocol modularity, memory management, and network interfaces are based
on Rob Gurwitz’s TCP/IP implementation for the 4.1BSD version of UNIX on the VAX [Gurwitz81]. Greg
Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

References

[Boggs79]
[BBN78]
[Cerf78]
[Clarks2]
[DECS0]
[Gurwitz81]
[15081]

[Joy82a]

[Postel 79]
[Postel80a]
[Postel80b]

[Xerox81]

[Zimmermann80]

CSRG TR/6

Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An Internetwork
Architecture. Report CSL-79-10. XEROX Palo Alto Research Center, July 1979.

Bolt Beranek and Newman; Specification for the Interconnection of Host and IMP.
BBN Technical Report 1822. May 1978.

Cerf, V. G.; The Catenet Model for Internetworking. Internet Working Group,
IEN 48. July 1978.

Clark, D. D.; Window and Acknowledgement Strategy in TCP. Internet Working
Group, IEN Draft Clark-2. March 1982.

Digital Equipment Corporation; DECnet DIGITAL Network Architecture — Gen-
eral Description. Order No. AA-K179A-TK. October 1980.

Gurwitz, R. F; VAX-UNIX Networking Support Project — Implementation
Description. Internetwork Working Group, IEN 168. January 1981.

International Organization for Standardization. 1SO Open Systems Interconnection
— Basic Reference Model. 1SO/TC 97/SC 16 N 719. August 1981.

Joy, W.; Cooper, E.; Fabry, R.; Leffler, S.; and McKusick, M.; 4.2BSD System
Manual. Computer Systems Research Group, Technical Report 5. University of
California, Berkeley. Draft of September 1, 1982.

Postel, J., ed. DOD Standard User Datagram Protocol. Internet Working Group,
IEN 88. May 1979.

Postel, J., ed. DOD Standard Internet Protocol. Internet Working Group, IEN
128. January 1980.

Postel, J., ed. DOD Standard Transmission Control Protocol. Internet Working
Group, IEN 129. January 1980.

Xerox Corporation. Internet Transport Protocols. Xerox System Integration
Standard 028112. December 1981.

Zimmermann, H. OSI Reference Model — The ISO Model of Architecture for
Open Systems Interconnection. IEEE Transactions on Communications.
Com-28(4); 425-432. April 1980.

Lefiler, et. al.

