
UNIX Pascal User’s Manual
Version 1.0 − November, 1977

William N. Joy

Susan L. Graham

Charles B. Haley†

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

UNIX Pascal is designed for interactive instructional use and runs on the PDP 11/45
and PDP 11/70 computers. It produces interpretive code, providing fast translation at the
expense of slower execution speed. An execution profiler and Wirth’s cross reference
program are also available with the system. The system supports full Pascal, with the
exception of procedure and function names as parameters. The language accepted is
very close to ‘standard’ Pascal, with only a small number of extensions for the UNIX sys-
tem.

The User’s Manual gives a list of sources relating to the UNIX system, the Pascal
language, and the UNIX Pascal system. Basic usage examples are provided for the Pascal
interpreter components pi, px, pix, and

Errors commonly encountered in these programs are discussed. Details are given of spe-
cial considerations due to the interactive implementation. A number of examples
are provided including many dealing with input/output. An appendix supplements
Wirth’s Pascal Report to form the full definition of the UNIX implementation of the
language.

16 January 2004

UNIX Pascal User’s Manual
Version 1.0 − November, 1977

William N. Joy

Susan L. Graham

Charles B. Haley†

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Introduction

The UNIX Pascal User’s Manual consists of five major sections and an appendix. In section 1 we give
sources of information about UNIX, about the programming language Pascal, and about the UNIX implemen-
tation of the language. Section 2 introduces the UNIX implementation and provides a number of basic
examples. Section 3 discusses the error diagnostics produced by the translator pi and the runtime inter-
preter px. Section 4 describes input/output with special attention given to features of the interactive imple-
mentation and to features unique to UNIX. Section 5 gives details on the components of the system and
explanation of all relevant options. The User’s Manual concludes with an appendix to Wirth’s Pascal
Report with which it forms a precise definition of the implementation.

History of the implementation

The first UNIX Pascal system was written by Ken Thompson in early 1976. The main features of the
present system result from the work of Charles Haley and William Joy during the latter half of 1976. Ear-
lier versions of this system have been in use since January, 1977.

Acknowledgement

The financial support of the first and second authors’ work by the National Science Foundation under
grant MCS74-07644-A03, and the first author’s work by an IBM Fellowship are gratefully acknowledged.

-2-

1. Sources of information

This section lists the resources available on the UC Berkeley campus for information about general
features of UNIX, UNIX text editing, the Pascal language, and the UNIX Pascal implementation, concluding
with a list of references. The available documents include both so-called standard documents − those dis-
tributed with all UNIX system − and documents (such as this one) written at Berkeley.

1.1. Where to get documentation

On the UC Berkeley campus, documentation is available at the Computer Center Library, room 218B
Evans Hall. The library is open from 8:00 A.M. to 5:00 P.M. Monday through Friday. For classes in the
Computer Science Division, Pascal documentation is usually available through a department office. The
best source for general UNIX documentation is, however, the Computer Center Library.

Current documentation for most of the UNIX system is also available ‘‘on line’’ at your terminal.
Details on getting such documentation interactively are given in section 1.3 on UNIX documentation.

1.2. Computer Center short courses

For those not enrolled in Computer Science Division courses, and who have no prior experience
using UNIX, the short-courses offered by the staff of the Computer Center are highly recommended. These
courses are offered free of charge, and are usually held at the beginning of each quarter. The two most
valuable short courses for the UNIX Pascal user are the ones dealing with basic use of UNIX, and with UNIX

text editing. If you are unable to attend the short courses, documents for these courses are available at the
Computer Center Library, and are recommended. The documents are in a tutorial format, so it is possible
to use them on your own.

1.3. Documentation describing UNIX

The following documents are those recommended as tutorial and reference material about the UNIX

system. We giv e the documents with the introductory and tutorial materials first, the reference materials
last.

Communicating with UNIX

This set of documents should be read by every new UNIX user. The documents, written by Ricki Blau
of the Computer Center Staff, introduce the basic use of the UNIX command language processor (the
‘‘shell’’), and the most commonly used commands. The author makes no assumptions about prior experi-
ence with interactive computing or with UNIX. The six documents which comprise the set introduce most
of the UNIX system features which will be needed by the new Pascal user in order to survive with UNIX Pas-
cal.

UNIX For Beginners

This document is the basic tutorial for UNIX available with the standard system. It is a useful intro-
duction to UNIX but does not provide as much explanation as Communicating with UNIX. The document is
not up-to-date with the current status of the Berkeley system, but is very useful as a supplement to Commu-
nicating with UNIX.

The UNIX Time Sharing System

By the primary authors of UNIX, Dennis Ritchie and Ken Thompson, this excellent award-winning
article appeared in the Communications of the ACM in July, 1974 and describes the general features of UNIX

in an advanced setting. It provides useful details on the design philosophy and inner workings of the UNIX

system. It makes interesting reading after you have experimented with the system for a while.

UNIX Programmer’s Manual

This manual is the major source of details on the components of the UNIX system. It consists of an
Introduction, a permuted index, and eight command sections. Section I consists of descriptions of most of
the ‘‘commands’’ of UNIX. Most of the other sections have limited relevance to the user of UNIX Pascal,

-3-

being of interest mainly to system programmers. Portions of the manual are available from the Computer
Center Library.

UNIX documentation often refers the reader to sections of the manual. Such a reference consists of a
command name and a section number. An example of such a reference would be: pi (VI). Here pi is a
command name − the Pascal interpretive translator, and ‘(VI)’ indicates that the command is part of Section
VI of the manual. The other pieces of the UNIX Pascal system are the Pascal interpretive executor px (VI),
the combined Pascal translator and interpretive executor pix (VI), the Pascal execution profiler

(VI), the Pascal cross-reference generator pxref (VI), and the filter which interprets carriage control pcc
(VI).

It is possible to obtain a copy of a manual section by using the man (VI) command. To get the Pascal
documentation just described one could issue the command:

% man pi

to the shell. The user input here is shown in bold face; the ‘% ’, which was printed by the shell as a
prompt, is not. Similarly the command:

% man man

asks the man command to describe itself.

1.4. Text editing documents

The following documents introduce the various UNIX text editors. In addition to the documents
described here, there is an implementation of the text editor teco available locally. No documentation on
this editor is available currently however.

Text editing with UNIX

This series of documents is used for the short course given at the Computer Center on text editing. It
can also be used for self-study, and is the best tutorial currently available on basic text editing. For those
not in Computer Science Division courses, the associated short course at the Computer Center on text edit-
ing is strongly recommended.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is the standard tutorial for the UNIX

text editor ed. This document also introduces you to the very basics of text editing, but does not discuss
using the system itself at the same time. For this reason, this document is recommended as supplemental
reading, along with the document Te xt editing with UNIX.

Ex Reference Manual

The text editor ex is an enhanced version of the text editor ed. It is designed for use by people who
have not used a text editor before as well as those experienced editor users who wish to use its new fea-
tures. This document summarizes the features of ex. For persons with little previous editor experience, the
tutorials listed above are also recommended.

-4-

1.5. Pascal documents − The language

This section describes the documents on the Pascal language which are likely to be most useful to the
UNIX Pascal user. Complete references for these documents are given in section 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduction to the fea-
tures of the language Pascal, and serves as an excellent quick-reference to the language. The reader with no
familiarity with Algol-like languages may prefer one of the Pascal text books listed below, as they provide
more examples and explanation. Particularly important here are pages 116-118 which define the syntax of
the language. Sections 13 and 14 and Appendix F pertain only to the 6000-3.4 implementation of Pascal.

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. It is the guiding reference for
implementors and the fundamental definition of the language. Some programmers find this report too con-
cise to be of practical use, preferring the User Manual as a reference.

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books by Wirth Sys-
tematic Programming and Algorithms + Data Structures = Programs use Pascal as a vehicle for teaching
programming and data structure concepts respectively. They are both recommended. Other books on Pas-
cal are listed in the references below.

1.6. Pascal documents − The UNIX Implementation

This section describes the documentation which is available describing the UNIX implementation of
Pascal.

User’s Manual

The document you are reading is the User’s Manual for UNIX Pascal. We often refer the reader to the
Jensen-Wirth User Manual mentioned above, a different document with a similar name.

Manual sections

The sections relating to Pascal in the UNIX Programmer’s Manual are pix (VI), pi (VI), pcc (VI), px
(VI), pxp (VI), and pxref (VI). These sections give a description of each program, summarize the available
options, indicate files used by the program, give basic information on the diagnostics produced and include
a list of known bugs.

Implementation notes

For those interested in the internal organization of the UNIX Pascal system there are a series of Imple-
mentation Notes describing these details. The PI 1.0 Implementation Notes describe the structure of the
Pascal translator pi ; the PX 1.0 Implementation Notes describe the Pascal interpreter px ; and the PXP 1.0
Implementation Notes describe the structure of the execution profiler pxp.

1.7. References

UNIX Documents

Ricki Blau
Communicating With UNIX
Computer Center and Computer Science Division
University of California, Berkeley
July, 1977.

-5-

William N. Joy
Ex Reference Manual − Version 1.1
Computer Center
University of California, Berkeley
November, 1977.

James Joyce
Te xt editing with UNIX
Computer Center
University of California, Berkeley
July, 1977.

Brian W. Kernighan
A Tutorial Introduction to the UNIX Text Editor
Bell Laboratories
Murray Hill, New Jersey.

Brian W. Kernighan
UNIX for Beginners
Bell Laboratories
Murray Hill, New Jersey.

Dennis M. Ritchie and Ken Thompson
The UNIX Time Sharing System
Communications of the ACM
July 1974
365-378.

Ken Thompson and Dennis M. Ritchie†
UNIX Programmer’s Manual − Version 6
Bell Laboratories
Murray Hill, New Jersey
May 1975.

Pascal Language Documents

Conway, Gries and Zimmerman
A Primer on PASCAL
Winthrop, Cambridge Mass.
1976, 433 pp.

Kathleen Jensen and Niklaus Wirth
Pascal − User Manual and Report
Springer-Verlag, New York.
1975, 167 pp.

C. A. G. Webster
Introduction to Pascal
Heyden and Son, New York
1976, 129pp.

†At Berkeley a revised version of this manual is available and to be preferred.

-6-

Niklaus Wirth
Algorithms + Data structures = Programs
Prentice-Hall, New York.
1976, 366 pp.

Niklaus Wirth
Systematic Programming
Prentice-Hall, New York.
1973, 169 pp.

UNIX Pascal documents

The following documents are available from the Computer Center Library at the University of Cali-
fornia, Berkeley.

Charles B. Haley and William N. Joy
PI 1.0 Implementation Notes
In preparation: November, 1977.

William N. Joy, Susan L. Graham, and Charles B. Haley
UNIX Pascal User’s Manual − Version 1.0
November, 1977.

William N. Joy
PX 1.0 Implementation Notes
In preparation: November, 1977.

William N. Joy
PXP 1.0 Implementation Notes
In preparation: November, 1977.

-7-

2. Basic UNIX Pascal

The following sections explain the basics of using UNIX Pascal. In examples here we use the text edi-
tor ex (VI). Users of the text editor ed should have little trouble following these examples, as ex is similar
to ed. We use ex because it allows us to make clearer examples. The new UNIX user will find it helpful to
read one of the text editor documents described in section 1.4 before continuing with this section.

2.1. A first program

To prepare a program for UNIX Pascal we first need to have an account on UNIX and to ‘login’ to the
system on this account. These procedures are described in the documents Communicating with UNIX and
UNIX for Beginners.

Once we are logged in we need to choose a name for our program; let us call it ‘first’ as this is the
first example. We must also choose a name for the file in which the program will be stored. The UNIX Pas-
cal system requires that programs reside in files which have names ending with the sequence ‘.p’ so we will
call our file ‘first.p’.

A sample editing session to create this file would begin:

% ex first.p
"first.p" No such file or directory
:

We didn’t expect the file to exist, so the error diagnostic doesn’t bother us. The editor now knows the name
of the file we are creating. The ‘:’ prompt indicates that it is ready for command input. We can add the text
for our program using the ‘append’ command as follows.

:append
program first(output)
begin

writeln(´Hello, world!´)
end.
.
:

The line containing the single ‘.’ character here indicated the end of the appended text. The ‘:’ prompt indi-
cates that ex is ready for another command. As the editor operates in a temporary work space we must now
store the contents of this work space in the file ‘first.p’ so we can use the Pascal translator and executor pix
on it.

:write
"first.p" 4 lines, 59 characters
:quit
%

We wrote out the file from the edit buffer here with the ‘write’ command, and ex indicated the number of
lines and characters written. We then quit the editor, and now hav e a prompt from the shell.

We are ready to try to translate and execute our program.

% pix first.p
2 begin

e ---↑ ---- Inserted ´;´
Execution begins...
Hello, world!
Execution terminated
1 statement executed in 0.01 seconds cpu time
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that the rest of the
line is an image of the second line of our program. The translator is saying that it expected to find a ‘;’

-8-

before the keyword begin on this line. If we look at the Pascal syntax charts in the Jensen-Wirth User
Manual, or at some of the sample programs therein, we will see that we have omitted the terminating ‘;’ of
the program statement on the first line of our program.

One other thing to notice about the error diagnostic is the letter ‘e’ at the beginning. It stands for
‘error’, indicating that our input was not legal Pascal. The fact that it is an ‘e’ rather than an ‘E’ indicates
that the translator managed to recover from this error well enough that generation of code and execution
could take place. Execution is possible whenever no fatal ‘E’ errors occur during translation. The other
classes of diagnostics are ‘w’ warnings, which do not necessarily indicate errors in the program, but point
out inconsistencies which are likely to be due to program bugs, and ‘s’ standard-Pascal violations.†

After completing the translation of the program to interpretive code, the Pascal system indicates that
execution of the translated program began. The output from the execution of the program then appeared.
At program termination, the Pascal runtime system indicated the number of statements executed, and the
amount of cpu time used, with the resolution of the latter being 1/60’th of a second.

Let us now fix the error in the program and translate it to a permanent object code file obj using pi.
The program pi translates Pascal programs but stores the object code instead of executing it‡.

% ex first.p
"first.p" 4 lines, 59 characters
:1 print
program first(output)
:s/$/;
program first(output);
:write
"first.p" 4 lines, 60 characters
:!pi %
!pi first.p
!
:quit
%

The first command issued from ex with the ‘!’ involved the use of the ‘%’ character which stands in this
command for the file we are editing. Ex made this substitution, and then echoed back the expanded line
before executing the command. When the command finished, the editor echoed the character ‘!’ so that we
would know it was done.

If we now use the UNIX ls list files command we can see what files we have:

% ls
first.p
obj
%

The file ‘obj’ here contains the Pascal interpreter code. We can execute this by typing:

% px obj
Hello, world!
1 statement executed in 0.02 seconds cpu time
%

Alternatively, ‘obj’ will be noticed to contain a Pascal object by the shell so that the command†:

†The standard Pascal warnings occur only when the associated s translator option is enabled. The s option is
discussed in sections 5.1 and A.6 below. Warning diagnostics are discussed at the end of section 3.2, the associ-
ated w option is described in section 5.2.

‡This script indicates some other useful approaches to debugging Pascal programs. As in ed we can shorten
commands in ex to an initial prefix of the command name as we did with the substitute command here. We hav e
also used the ‘!’ shell escape command here to execute other commands with a shell without leaving the editor.

†It should be noted that the ‘obj’ works only with a modified shell. This modification has been made at Berke-
ley. It may not be available if you are elsewhere. In this case you can use the syntax with px specified explic-

-9-

% obj

will have the same effect. Some examples of different ways to execute the program follow.

% px
Hello, world!
1 statement executed in 0.02 seconds cpu time
% pi −−p first.p
% px obj
Hello, world!
% pix −−p first.p
Hello, world!
%

Note that px will assume that ‘obj’ is the file we wish to execute if we don’t tell it otherwise. The last
two translations use the −p no-post-mortem option to eliminate execution statistics and ‘Execution begins’
and ‘Execution terminated’ messages. See section 5.2 for more details. If we now look at the files in our
directory we will see:

% ls
first.p
obj
%

We can give our object program a name other than ‘obj’ by using the move command mv (I). Thus to name
our program ‘hello’:

% mv obj hello
% hello
Hello, world!
% ls
first.p
hello
%

Finally we can get rid of the Pascal object code by using the rm (I) remove file command, e.g.:

% rm hello
% ls
first.p
%

For small programs which are being developed pix tends to be more convenient to use than pi and px.
Except for absence of the obj file after a pix run, a pix command is equivalent to a pi command followed by
a px command. For larger programs, where a number of runs testing different parts of the program are to
be made, pi is useful as this obj file can be executed any desired number of times.

2.2. A larger program

Suppose that we have used the editor to put a larger program in the file ‘bigger.p’. We can list this
program with line numbers by using the program number†, i.e.:

itly.

†If the number program is not available, lno may be. It is similar, but aligns the line numbers in a different, less
pleasant way.

−10−

% number bigger.p
1 (∗
2 ∗ Graphic representation of a function
3 ∗ f(x) = exp(−x) ∗ sin(2 ∗ pi ∗ x)
4 ∗)
5 program graph1(output);
6 const
7 d = 0.0625; (∗ 1/16, 16 lines for interval [x, x+1] ∗)
8 s = 32; (∗ 32 character width for interval [x, x+1]
9 h = 34; (∗ Character position of x−axis ∗)

10 c = 6.28138; (∗ 2 ∗ pi ∗)
11 lim = 32;
12 var
13 x, y: real;
14 i, n: integer;
15 begin
16 for i := 0 to lim begin
17 x := d / i;
18 y := exp(−x9 ∗ sin(i ∗ x);
19 n := Round(s ∗ y) + h;
20 repeat
21 write(´ ´);
22 n := n − 1
23 writeln(´∗´)
24 end.

%

This program is similar to program 4.9 on page 30 of the Jensen-Wirth User Manual. A number of prob-
lems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using pix we get the following response:

% pix bigger.p
9 h = 34; (∗ Character position of x−axis ∗)

w ------------------------↑ ---- (∗ in a (∗ ... ∗) comment
16 for i := 0 to lim begin

e -----------------------------↑ ---- Inserted keyword do
18 y := exp(−x9 ∗ sin(i ∗ x);

E -----------------------------↑ ---- Undefined variable
e ---↑ ---- Inserted ´)´

19 n := Round(s ∗ y) + h;
E ----------------------↑ ---- Undefined function
E --↑ ---- Undefined variable

23 writeln(´∗´)
e ----------------↑ ---- Inserted ´;´

24 end.
E ----↑ ---- Expected keyword until
e --------↑ ---- Inserted keyword end matching begin on line 15
In program graph1:

w − constant c is never used
E − x9 undefined on line 18
E − Round undefined on line 19
E − h undefined on line 19

Execution suppressed due to compilation errors
%

-11-

Since there were fatal ‘E’ errors in our program, no code was generated and execution was necessar-
ily suppressed. One thing which would be useful at this point is a listing of the program with the error mes-
sages. We can get this by using the command:

% pi −−l bigger.p

There is no point in using pix here, since we know there are fatal errors in the program. This command will
produce the output at our terminal. If we are at a terminal which does not produce a hard copy we may
wish to print this listing off-line on a line printer†. We can do this with the command:

% pi −−l bigger.p | lpr

In the next few sections we will illustrate various aspects of the UNIX Pascal system by correcting this
program.

2.3. Correcting the first errors

Most of the errors which occurred in this program were syntactic errors, those in the format and
structure of the program rather than its content. Syntax errors are flagged by printing the offending line,
and then a line which flags the location at which an error was detected. The flag line also gives an explana-
tion stating either a possible cause of the error, a simple action which can be taken to recover from the error
so as to be able to continue the analysis, a symbol which was expected at the point of error, or an indication
that the input was ‘malformed’. In the last case, the recovery may skip ahead in the input to a point where
analysis of the program can continue.

In this example, the first error diagnostic indicates that the translator detected a comment within a
comment. While this is not considered an error in ‘standard’ Pascal, it usually corresponds to an error in
the program which is being translated. In this case, we have accidentally omitted the trailing ‘∗)’ of the
comment on line 8. We can begin an editor session to correct this problem by doing:

% ex bigger.p
"bigger.p" 24 lines, 512 characters
:8s/$/ ∗∗)

s = 32; (∗ 32 character width for interval [x, x+1] ∗)
:

The second diagnostic, given after line 16, indicates that the keyword do was expected before the
keyword begin in the for statement. If we examine the statement syntax chart on page 118 of the Jensen-
Wirth User Manual we will discover that do is a necessary part of the for statement. Similarly, we could
have referred to section C.3 of the Jensen-Wirth User Manual to learn about the for statement and gotten
the same information there. It is often useful to refer to these syntax charts and to the relevant sections of
this book.

We can correct this problem by first scanning for the keyword for in the file and then substituting the
keyword do to appear in front of the keyword begin there. Thus:

:/for
for i := 0 to lim begin

:s/begin/do &
for i := 0 to lim do begin

:

The next error in the program is easy to pinpoint. On line 18, we didn’t hit the shift key and got a ‘9’
instead of a ‘)’. The translator diagnosed that ‘x9’ was an undefined variable and, later, that a ‘)’ was miss-
ing in the statement. It should be stressed that pi is not suggesting that you should insert a ‘)’ before the ‘;’.
It is only indicating that making this change will help it to be able to continue analyzing the program so as
to be able to diagnose further errors. You must then determine the true cause of the error and make the
appropriate correction to the source text.

†At Berkeley, the line printer for the Cory Hall system is in Room 199B. The line printers for the Computer
Center systems are in the basement of Evans Hall.

-12-

This error also illustrates the fact that one error in the input may lead to multiple error diagnostics.
Pi attempts to give only one diagnostic for each error, but single errors in the input sometimes appear to be
more than one error. It is also the case that pi may not detect an error when it occurs, but may detect it later
in the input. This would have happened in this example if we had typed ‘x’ instead of ‘x9’.

The translator next detected, on line 19, that the function Round and the variable h were undefined. It
does not know about Round because UNIX Pascal normally distinguishes between upper- and lower-case.
On UNIX lower-case is preferred†, and all keywords and built-in procedure and function names are com-
posed of lower-case letters, just as they are in the Jensen-Wirth Pascal Report. Thus we need to use the
function round here. As far as h is concerned, we can see why it is undefined if we look back to line 9 and
note that its definition was lost in the non-terminated comment. This diagnostic need not, therefore, con-
cern us.

The next error which occurred in the program caused the translator to insert a ‘;’ before the statement
calling writeln on line 23. If we examine the program around the point of error we will see that the actual
error is that the keyword until and an associated expression have been omitted here. Note that the diagnos-
tic from the translator does not indicate the actual error, and is somewhat misleading. The translator made
the correction which seemed to be most plausible. As the omission of a ‘;’ character is a common mistake,
the translator chose to indicate this as a possible fix here. It later detected that the keyword until was miss-
ing, but not until it saw the keyword end on line 24. The combination of these diagnostics indicate to us
the true problem.

The final syntactic error message indicates that the translator needed an end keyword to match the
begin at line 15. Since the end at line 24 is supposed to match this begin, we can infer that another begin
must have been mismatched, and have matched this end. Thus we see that we need an end to match the
begin at line 16, and to appear before the final end. We can make these corrections:

:/x9/s//x)
y := exp(−x) ∗ sin(i ∗ x);

:++s/Round/round
n := round(s ∗ y) + h;

:/write
write(´ ´);

:/
writeln(´∗´)

:insert
until n == 0;

.
:$
end.
:insert

end
.
:

At the end of each procedure or function and the end of the program the translator summarizes ref-
erences to undefined variables and improper usages of variables. It also gives warnings about potential
errors. In our program, the summary errors do not indicate any further problems but the warning that c is
unused is somewhat suspicious. Examining the program we see that the constant was intended to be used
in the expression which is an argument to sin, so we can correct this expression, and translate the program.
We hav e now made a correction for each diagnosed error in our program.

†One good reason for using lower-case is that it is easier to type.

−13−

:?i ?s//c /
y := exp(−x) ∗ sin(c ∗ x);

:write
"bigger.p" 26 lines, 538 characters
:!pi %
!pi bigger.p
!
:quit
%

It should be noted that the translator suppresses warning diagnostics for a particular procedure, function or
the main program when it finds severe syntax errors in that part of the source text. This is to prevent possi-
bly confusing and incorrect warning diagnostics from being produced. Thus these warning diagnostics may
not appear in a program with bad syntax errors until these errors are corrected.

-14-

We are now ready to execute our program for the first time. We will do so in the next section after
giving a listing of the corrected program for reference purposes.

% number bigger.p
1 (∗
2 ∗ Graphic representation of a function
3 ∗ f(x) = exp(−x) ∗ sin(2 ∗ pi ∗ x)
4 ∗)
5 program graph1(output);
6 const
7 d = 0.0625; (∗ 1/16, 16 lines for interval [x, x+1] ∗)
8 s = 32; (∗ 32 character width for interval [x, x+1] ∗)
9 h = 34; (∗ Character position of x−axis ∗)

10 c = 6.28138; (∗ 2 ∗ pi ∗)
11 lim = 32;
12 var
13 x, y: real;
14 i, n: integer;
15 begin
16 for i := 0 to lim do begin
17 x := d / i;
18 y := exp(−x) ∗ sin(c ∗ x);
19 n := round(s ∗ y) + h;
20 repeat
21 write(´ ´);
22 n := n − 1
23 until n = 0;
24 writeln(´∗´)
25 end
26 end.

%

2.4. Executing the second example

We are now ready to execute the second example. The following output was produced by our first
run.

% px
Execution begins...
Floating divide by zero

Error at "graph1"+2 near line 17

Execution terminated abnormally
2 statements executed in 0.01 seconds cpu time
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a ‘division by zero’ at line
17. Examining line 17, we see that we have written the statement ‘x := d / i’ instead of ‘x := d ∗ i’. We can
correct this and rerun the program:

% ex bigger.p
"bigger.p" 26 lines, 538 characters
:17

x := d / i
:s´/´∗∗

x := d ∗ i

-15-

:write
"bigger.p" 26 lines, 538 characters
:!pix %
!pix bigger.p
Execution begins...

∗
∗

∗
∗
∗

∗
∗

∗
∗

∗
∗

∗
∗
∗

∗
∗

∗
∗

∗
∗
∗
∗

∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗

Execution terminated
2550 statements executed in 0.27 seconds cpu time
!
:q
%

This appears to be the output we wanted. We could now sav e the output in a file if we wished by
using the shell to redirect the output:

% px > graph

We can use cat (I) to see the contents of the file graph. We can also make a listing of the graph on the line
printer without putting it into a file, e.g.

% px | lpr
Execution begins...
Execution terminated
2550 statements executed in 0.32 seconds cpu time

-16-

%

Note here that the statistics lines came out on our terminal. The statistics line comes out on the diagnostic
output (unit 2.) There are two ways to get rid of the statistics line. We can redirect the statistics message to
the printer using the syntax ‘|∗’ to the shell† rather than ‘|’, i.e.:

% px |∗∗ lpr
%

or we can translate the program with the p option disabled on the command line as we did above. This will
disable all post-mortem dumping including the statistics line, thus:

% pi −−p bigger.p
% px | lpr
%

This option also disables the statement limit which normally guards against infinite looping. You should
not use it until your program is debugged. Also if p is specified and an error occurs, you will not get run
time diagnostic information to help you determine what the problem is.

2.5. Formatting the program listing

It is possible to use special lines within the source text of a program to format the program listing.
An empty line (one with no characters on it) corresponds to a ‘space’ macro in an assembler, leaving a
completely blank line without a line number. A line containing only a control-l (form-feed) character will
cause a page eject in the listing with the corresponding line number suppressed. This corresponds to an
‘eject’ pseudo-instruction. See also section 5.2 for details on the n and i options of pi.

2.6. Execution profiling

An execution profile consists of a structured listing of (all or part of) a program with information
about the number of times each statement in the program was executed for a particular run of the program.
These profiles can be used for several purposes. In a program which was abnormally terminated due to
excessive looping or recursion or by a program fault, the counts can facilitate location of the error. Zero
counts mark portions of the program which were not executed; during the early debugging stages they
should prompt new test data or a re-examination of the program logic. The profile is perhaps most valu-
able, however, in drawing attention to the (typically small) portions of the program that dominate execution
time. This information can be used for source level optimization.

An example

A prime number is a number which is divisible only by itself and the number one. The program
primes, written by Niklaus Wirth, determines the first few prime numbers. In translating the program we
have specified the z option to pix. This option causes the translator to generate counters and count instruc-
tions sufficient in number to determine the number of times each statement in the program was executed.†
When execution of the program completes, either normally or abnormally, this count data is written to the
file pmon.out in the current directory.‡ It is then possible to prepare an execution profile by giving

the name of the file associated with this data, as was done in the following example.

% pix −−l −−z primes.p

† The syntax ‘|∗’ as well as ‘>∗’ and ‘>>∗’ are also local modifications at Berkeley. They redirect unit 2, the
diagnostic output, with unit 1, the standard output, otherwise corresponding to ‘|’, ‘>’, and ‘>>’. This capability
is not present in the standard version 6 shell, and a different syntax is expected to be used with the standard ver-
sion 7 shell.

†The counts are completely accurate only in the absence of runtime errors and nonlocal goto statements. This
is not generally a problem, however, as in structured programs nonlocal goto statements occur infrequently, and
counts are incorrect after abnormal termination only when the upward look described below to get a count
passes a suspended call point.

‡Pmon.out has a name similar to mon.out the monitor file produced by the profiling facility of the C compiler cc
(I). See prof (I) for a discussion of the C compiler profiling facilities.

-17-

UNIX Pascal PI −− Version 1.0 (September 8, 1977)

Sat Sep 10 13:19 1977 primes.p

1 program primes(output);
2 const n = 50; n1 = 7; (∗n1 = sqrt(n)∗)
3 var i,k,x,inc,lim,square,l: integer;
4 prim: boolean;
5 p,v: array[1..n1] of integer;
6 begin
7 write(2:6, 3:6); l := 2;
8 x := 1; inc := 4; lim := 1; square := 9;
9 for i := 3 to n do

10 begin (∗find next prime∗)
11 repeat x := x + inc; inc := 6−inc;
12 if square <= x then
13 begin lim := lim+1;
14 v[lim] := square; square := sqr(p[lim+1])
15 end ;
16 k := 2; prim := true;
17 while prim and (k<lim) do
18 begin k := k+1;
19 if v[k] < x then v[k] := v[k] + 2∗p[k];
20 prim := x <> v[k]
21 end
22 until prim;
23 if i <= n1 then p[i] := x;
24 write(x:6); l := l+1;
25 if l = 10 then
26 begin writeln; l := 0
27 end
28 end ;
29 writeln;
30 end .

Execution begins...
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated
1404 statements executed in 0.17 seconds cpu time
%

Discussion

The header lines of the outputs of pix and

in this example indicate the version of the translator and execution profiler in use at the time this example
was prepared. The time given with the file name (also on the header line) indicates the time of last
modification of the program source file. This time serves to version stamp the input program. Pxp
also indicates the time at which the profile data was gathered.

% pxp −−z primes.p
UNIX Pascal PXP −− Version 1.0 (September 10, 1977)

-18-

Sat Sep 10 13:19 1977 primes.p

Profiled Sat Sep 10 13:19 1977

1 1.-----|program primes(output);
2 |const
2 | n = 50;
2 | n1 = 7; (∗n1 = sqrt(n)∗)
3 |var
3 | i, k, x, inc, lim, square, l: integer;
4 | prim: boolean;
5 | p, v: array [1..n1] of integer;
6 |begin
7 | write(2: 6, 3: 6);
7 | l := 2;
8 | x := 1;
8 | inc := 4;
8 | lim := 1;
8 | square := 9;
9 | for i := 3 to n do begin (∗find next prime∗)
9 48. -----| repeat

11 76.-----| x := x + inc;
11 | inc := 6 − inc;
12 | if square <= x then begin
13 5.-----| lim := lim + 1;
14 | v[lim] := square;
14 | square := sqr(p[lim + 1])
14 | end;
16 | k := 2;
16 | prim := true;
17 | while prim and (k < lim) do begin
18 157.-----| k := k + 1;
19 | if v[k] < x then
19 42.-----| v[k] := v[k] + 2 ∗ p[k];
20 | prim := x <> v[k]
20 | end
20 |until prim;
23 | if i <= n1 then
23 5.-----| p[i] := x;
24 | write(x: 6);
24 | l := l + 1;
25 | if l = 10 then begin
26 5.-----| writeln;
26 | l := 0
26 | end
26 | end;
29 | writeln
29 |end.

%

To determine the number of times a statement was executed, one looks to the left of the statement and
finds the corresponding vertical bar ‘|’. If this vertical bar is labelled with a count then that count gives the
number of times the statement was executed. If the bar is not labelled, we look up in the listing to find the
first ‘|’ which directly above the original one which has a count and that is the answer. Thus, in our exam-
ple, k was incremented 157 times on line 18, while the write procedure call on line 24 was executed 48

-19-

times as given by the count on the repeat.

More information on pxp can be found in its manual section

(VI) and in sections 5.4, 5.5 and 5.10.

-20-

3. Error diagnostics

This section of the User’s Manual discusses the error diagnostics of the programs pi and px. Pix is a
simple but useful program which invokes pi and px to do all the real processing. See its manual section pix
(VI) and section 5.2 below for more details.

3.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal programmers and
the recovery mechanisms of the current translator may help in using the system.

Illegal characters

Characters such as ‘$’, ‘!’, and ‘@’ are not part of the language Pascal. If they are found in the
source program, and are not part of a constant string, a constant character, or a comment, they are consid-
ered to be ‘illegal characters’. This can happen if you leave off an opening string quote ‘´’. Note that the
character ‘"’, although used in English to quote strings, is not used to quote strings in Pascal. Most non-
printing characters in your input are also illegal except in character constants and character strings. Except
for the tab and form feed characters, which are used to ease formatting of the program, non-printing charac-
ters in the input file print as the character ‘?’ so that they will show in your listing.

String errors

There is no character string of length 0 in Pascal. Consequently the input ‘´´’ is not acceptable. Sim-
ilarly, encountering an end-of-line after an opening string quote ‘´’ without encountering the matching clos-
ing quote yields the diagnostic ‘‘Unmatched ´ for string’’. It is permissible to use the character ‘#’ instead
of ‘´’ to delimit character and constant strings for portability reasons. For this reason, a spuriously placed
‘#’ sometimes causes the diagnostic about unbalanced quotes. Similarly, a ‘#’ in column one is used when
preparing programs which are to be kept in multiple files. See section 5.9 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter. You can con-
vert parts of your program to comments without generating this diagnostic since there are two different
kinds of comments − those delimited by ‘{’ and ‘}’, and those delimited by ‘(∗’ and ‘∗)’. Thus consider:

{ This is a comment enclosing a piece of program
a := functioncall; (∗ comment within comment ∗)
procedurecall;
lhs := rhs; (∗ another comment ∗)
}

By using one kind of comment exclusively in your program you can use the other delimiters when
you need to ‘‘comment out’’ parts of your program†. In this way you will also allow the translator to help
by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will point to the begin-
ning of the comment, indicating that the comment is not terminated. In this case processing will terminate
immediately. See the discussion of ‘‘QUIT’’ below.

Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers both before and
after the decimal point. Thus the following statements, which look quite reasonable to FORTRAN users, gen-
erate diagnostics in Pascal:

4 r := 0.;

†If you wish to transport your program, especially to the 6000-3.4 implementation, you should use the character
sequence ‘(∗’ to delimit comments. For transportation over the rcslink to Pascal 6000-3.4, the character ‘#’
should be used to delimit characters and constant strings.

−21−

e -----------↑ ---- Digits required after decimal point
5 r := .0;

e --------↑ ---- Digits required before decimal point
6 r := 1.e10;

e -----------↑ ---- Digits required after decimal point
7 r := .05e−10;

e --------↑ ---- Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px.

Replacements, insertions, and deletions

When a syntax error is encountered in the input text, the parser invokes an error recovery procedure.
This procedure examines the input text immediately after the point of error and considers a set of simple
corrections to see whether they will allow the analysis to continue. These corrections involve replacing an
input token with a different token, inserting a token, or replacing an input token with a different token.
Most of these changes will not cause fatal syntax errors. The exception is the insertion of or replacement
with a symbol such as an identifier or a number; in this case the recovery makes no attempt to determine
which identifier or what number should be inserted, hence these are considered fatal syntax errors.

Consider the following example.

% pix −−l synerr.p
UNIX Pascal PI -- Version 1.0 (September 8, 1977)

Fri Sep 9 18:49 1977 synerr.p

1 progran syn(output);
e ---↑--- Replaced identifier with a keyword program

2 var i, j are integer;
e ------------↑--- Replaced identifier with a ´:´

3 begin
4 for j :∗ 1 to 20 begin

e ----------------↑--- Replaced ´∗´ with a ´=´
e ---------------------------↑--- Inserted keyword do

5 write(j);
6 i = 2 ∗∗ j;

e -----------------↑--- Inserted ´:´
E -----------------------↑--- Inserted identifier

7 writeln(i))
E ---------------------------↑--- Deleted ´)´

8 end
9 end.

%

The only surprise here may be that Pascal does not have an exponentiation operator, hence the complaint
about ‘∗∗’. This error illustrates that, if you assume that the language has a feature which it does not, the
translator diagnostic may not indicate this, as the translator is unlikely to recognize the construct you sup-
ply.

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will replace it with an
identifier of the appropriate class. Further references to this identifier will be summarized at the end of the
containing procedure or function or at the end of the program if the reference occurred in the main pro-
gram. Similarly, if an identifier is used in an inappropriate way, e.g. if a type identifier is used in an assign-
ment statement, or if a simple variable is used where a record variable is required, a diagnostic will be pro-
duced and an identifier of the appropriate type inserted. Further incorrect references to this identifier will

-22-

be flagged only if they inv olve incorrect use in a different way, with all incorrect uses being summarized in
the same way as undefined variable uses are.

Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will examine the
input to the left of the point of error to see if there is only one symbol which can follow this input. If this is
the case, the recovery will print a diagnostic which indicates that the given symbol was ‘Expected’.

In cases where none of these corrections resolve the problems in the input, the recovery may issue a
diagnostic that indicates that the input is ‘‘malformed’’. If necessary, the translator may then skip forward
in the input to a place where analysis can continue. This process may cause some errors in the text to be
missed.

Consider the following example:

% pix −−l synerr2.p
UNIX Pascal PI −− Version 1.0 (September 8, 1977)

Fri Sep 9 18:50 1977 synerr2.p

1 program synerr2(input,outpu);
2 integer a(10)

E ---↑ ---- Malformed declaration
3 begin
4 read(b);

E ----------------↑ ---- Undefined variable
5 for c := 1 to 10 do

E --------------↑ ---- Undefined variable
6 a(c) := b ∗ c;

E ---------------↑ ---- Undefined procedure
E ---------------------↑ ---- Malformed statement

7 end.
E 1 − File outpu listed in program statement but not declared
e 1 − The file output must appear in the program statement file list
In program synerr2:
E − a undefined on line 6
E − b undefined on line 4
E − c undefined on lines 5 6

Execution suppressed due to compilation errors
%

Here we misspelled input and gav e a FORTRAN style variable declaration which the translator diagnosed as a
‘Malformed declaration’. When, on line 6, we used ‘(’ and ‘)’ for subscripting (as in FORTRAN) rather than
the ‘[’ and ‘]’ which are used in Pascal, the translator noted that a was not defined as a procedure. This
occurred because procedure and function argument lists are delimited by parentheses in Pascal. As it is
not permissible to assign to procedure calls the translator diagnosed a malformed statement at the point of
assignment.

Expected and unexpected end-of-file, ‘‘QUIT’’

If the translator finds a complete program, but there is more non-comment text in the input file, then
it will indicate that an end-of-file was expected. This situation may occur after a bracketing error, or if too
many ends are present in the input. The message may appear after the recovery says that it ‘‘Expected `.´ ’’
since ‘.’ is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a diagnostic fol-
lowed by ‘‘QUIT’’. One example of this was given above − a non-terminated comment; another example is
a line which is longer than 160 characters. Consider also the following example.

-23-

% pix −−l mism.p
UNIX Pascal PI −− Version 1.0 (September 8, 1977)

Sat Sep 10 15:18 1977 mism.p

1 program mismatch(output)
2 begin

e ---↑ ---- Inserted ´;´
3 writeln(´∗∗∗´);
4 { The next line is the last line in the file }
5 writeln

E ------------------↑ ---- Unexpected end−of−file − QUIT
%

3.2. Translator semantic errors

The extremely large number of semantic diagnostic messages which the translator produces make it
unreasonable to discuss each message or group of messages in detail. The messages are, however, very
informative. We will here explain the typical formats and the terminology used in the error messages so
that you will be able to make sense out of them. In any case in which a diagnostic is not completely com-
prehensible you can refer to the User Manual by Jensen and Wirth for examples.

Format of the error diagnostics

As we saw in the example program above, the error diagnostics from the Pascal translator include the
number of a line in the text of the program as well as the text of the error message. While this number is
most often the line where the error occurred, it is occasionally the number of a line containing a bracketing
keyword like end or until. In this case, the diagnostic may refer to the previous statement. This occurs
because of the method the translator uses for sampling line numbers. The absence of a trailing ‘;’ in the
previous statement causes the line number corresponding to the end or until. to become associated with
the statement. As Pascal is a free-format language, the line number associations can only be approximate
and may seem arbitrary to some users. This is the only notable exception, however, to reasonable associa-
tions.

-24-

Incompatible types

Since Pascal is a strongly typed language, many semantic errors manifest themselves as type errors.
These are called ‘type clashes’ by the translator. The types allowed for various operators in the language
are summarized on page 108 of the Jensen-Wirth User Manual. It is important to know that the Pascal
translator, in its diagnostics, distinguishes between the following type ‘classes’:

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus, if you tried to assign an integer
value to a char variable you would receive a diagnostic like the following:

E 7 − Type clash: integer is incompatible with char
... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than once, the
same explanatory diagnostic will be given each time.

Scalar

The only class whose meaning is not self-explanatory is ‘scalar’. Scalar has a precise meaning in the
Jensen-Wirth User Manual where, in fact, it refers to char, integer, real, and Boolean types as well as the
enumerated types. For the purposes of the Pascal translator, scalar in an error message refers to a user-
defined, enumerated type, such as ops in the example above or color in

type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in the context of
the User Manual to refer to an integer variable as a scalar variable pi prefers the more specific identifica-
tion.

Function and procedure type errors

For built-in procedures and functions, two kinds of errors occur. If the routines are called with the
wrong number of arguments a message similar to:

E 12 − sin takes exactly one argument

is given. If the type of the argument is wrong, a message like

E 12 − sin´s argument must be integer or real, not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed as unimple-
mented in UNIX Pascal, notably those related to segmented files.

Can’t read and write scalars, etc.

The messages which state that scalar (user-defined) types cannot be written to and from files are often
mysterious. It is in fact the case that if you define

type color = (red, green, blue)

the translator does not associate these constants with the strings ‘red’, ‘green’, and ‘blue’ in any way. If
you wish such an association to be made, you will have to write a routine to make it. Note, in particular,
that you can only read characters, integers and real numbers from text files. You cannot read strings or
Booleans. It is possible to make a

file of color

but the representation is binary rather than string.

-25-

Expression diagnostics

The diagnostics for semantically ill-formed expressions are very explicit. Consider this sample trans-
lation:

% pi −−l expr.p
UNIX Pascal PI −− Version 1.0 (September 6, 1977)

Thu Sep 1 21:46 1977 expr.p

1 program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 c: (red, green, blue);
6 p: ↑ integer;
7 A: alfa;
8 B: packed array [1..5] of char;
9 begin

10 b := true;
11 c := red;
12 new(p);
13 a := [];
14 A := ´Hello, yellow´;
15 b := a and b;
16 a := a ∗ 3;
17 if input < 2 then writeln(´boo´);
18 if p <= 2 then writeln(´sure nuff´);
19 if A = B then writeln(´same´);
20 if c = true then writeln(´hue´´s and color´´s´)
21 end.

E 14 − Constant string too long
E 15 − Left operand of and must be Boolean, not set
E 16 − Cannot mix sets with integers and reals as operands of ∗
E 17 − files may not participate in comparisons
E 18 − pointers and integers cannot be compared − operator was <=
E 19 − Strings not same length in = comparison
E 20 − scalars and Booleans cannot be compared − operator was =
e 20 − Input is used but not defined in the program statement
In program x:
w − constant green is never used
w − constant blue is never used
w − variable B is used but never set

%

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently clear to allow
easy determination of the problem in the expressions.

Type equivalence

Several diagnostics produced by the Pascal translator complain about ‘non-equivalent types’. In gen-
eral, UNIX Pascal considers variables to have the same type only if they were declared with the same con-
structed type or with the same type identifier. Thus, the variables x and y declared as

−26−

var
x: ↑ integer;
y: ↑ integer;

do not have the same type. The assignment

x := y

thus produces the diagnostics:

E 7 − Type clash: non−identical pointer types
... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr = ↑ integer;

and use it to declare

var x: intptr; y: intptr;

Note that if we had initially declared

var x, y: ↑ integer;

then the assignment statement would have worked. The statement

x↑ := y↑

is allowed in either case. Since the parameter to a procedure or function must be declared with a type
identifier rather than a constructed type, it is always necessary, in practice, to declare any type which will be
used in this way.

Unreachable statements

UNIX Pascal flags unreachable statements. Such statements usually correspond to errors in the pro-
gram logic. Note that a statement is considered to be reachable if there is a potential path of control, even if
it can never be taken. Thus, no diagnostic is produced for the statement:

if false then
writeln(´impossible!´)

Goto’s into structured statements

The translator detects and complains about goto statements which transfer control into structured
statements (for, while, etc.) It does not allow such jumps, nor does it allow branching from the then part of
an if statement into the else part. Such checks are made only within the body of a single procedure or func-
tion.

Unused variables, never set variables

Although UNIX Pascal always clears variables to 0 at procedure and function entry, it is not good
programming practice to rely on this initialization. To discourage this practice, and to help detect errors in
program logic, pi flags as a ‘w’ warning error:

1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used, distinguishing between those variables for which
values are computed but which are never used, and those completely unused.

In fact, these diagnostics are applied to all declared items. Thus a constant or a procedure which is
declared but never used is flagged. The w option of pi may be used to suppress these warnings; see sections
5.1 and 5.2.

-27-

3.3. Translator panics, i/o errors

Panics

One class of error which rarely occurs, but which causes termination of all processing when it does is
a panic. A panic indicates a translator-detected internal inconsistency. A typical panic message is:

snark (rvalue) line=110 yyline=109
Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully terminated. You
should contact a teaching assistant or a member of the system staff, after saving a copy of your program for
later inspection. If you were making changes to an existing program when the problem occurred, you may
be able to work around the problem by ascertaining which change caused the snark and making a different
change or correcting an error in the program. You should report the problem in any case. Pascal system
bugs cannot be fixed unless they are reported.

Out of memory

The only other error which will abort translation when no errors are detected is running out of mem-
ory. All tables in the translator, with the exception of the parse stack, are dynamically allocated, and can
grow to take up the full available process space of 64000 bytes. Generally, the size of the largest translat-
able program is directly related to procedure and function size. A number of non-trivial Pascal programs,
including some with more than 2000 lines and 2500 statements have been translated and interpreted using
UNIX Pascal. Notable among these are the Pascal-S interpreter, a large set of programs for automated gen-
eration of code generators, and a general context-free parsing program which has been used to parse sen-
tences with a grammar for a superset of English.

If you receive an out of space message from the translator during translation of a large procedure or
function or one containing a large number of string constants you may yet be able to translate your pro-
gram if you break this one procedure or function into several routines.

I/O errors

Other errors which you may encounter when running pi relate to input-output. If pi cannot open the
file you specify, or if the file is empty, you will be so informed. If your disk space quota† is exceeded while
pi is creating the file obj, or if the system runs out of disk space you will be notified; in this case you should
remove unneeded files.

3.4. Run-time errors

We saw, in our second example, a run-time error. We here give the general description of run-time
errors. The more unusual interpreter error messages are explained briefly in the manual section for px (VI).

Start-up errors

These errors occur when the object file to be executed is not available or appropriate. Typical errors
here are caused by the specified object file not existing, not being a Pascal object, or being inaccessible to
the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in an inappropri-
ate way. Typical errors are values or subscripts out of range, bad arguments to built-in functions, exceeding
the statement limit because of an infinite loop, or running out of memory‡. The interpreter will produce a
backtrace after the error occurs, showing all the active routine calls, unless the p option was disabled when
the program was translated. Unfortunately, no variable values are given and no way of extracting them is

†Disk quotas are also a modification at Berkeley and may not exist at your installation.

‡The checks for running out of memory are not foolproof and there is a chance that the interpreter will fault,
producing a core image when it runs out of memory. This situation occurs very rarely.

-28-

available.

As an example of such an error, assume that we have accidentally declared the constant n1 to be 6,
instead of 7 on line 2 of the program primes as given in section 2.6 above. If we run this program we get
the following response.

% pix primes.p
Execution begins...

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167Subscript out of range

Error at "primes"+8 near line 14

Execution terminated abnormally
941 statements executed in 0.17 seconds cpu time
%

Here the interpreter indicates that the program terminated abnormally due to a subscript out of range
near line 14, which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified, then a backtrace will
be printed.† The file pmon.out of profile information will be written if the program was translated with the
z option enabled to pi or pix.

I/O interaction errors

The final class of interpreter errors results from inappropriate interactions with files, including the
user’s terminal. Included here are bad formats for integer and real numbers (such as no digits after the deci-
mal point) when reading.

Panics

A small number of panics are possible with px. These should be reported to a teaching assistant or to
the system staff if they occur.

†Occasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an interrupt termi-
nates a procedure or function entry or exit. In this case, the backtrace will only contain the current line. A
reverse call order list of procedures will not be given.

-29-

4. Input/output

This section describes features of the Pascal input/output environment, with special consideration of
the features peculiar to an interactive implementation.

4.1. Introduction

Our first sample programs, in section 2, used the file output. We gav e examples there of redirecting
the output to a file and to the line printer using the shell. Similarly, we can read the input from a file or
another program. Consider the following Pascal program which is similar to the program cat (I).

% pix −−l kat.p <primes
UNIX Pascal PI −− Version 1.0 (September 8, 1977)

Fri Sep 9 18:49 1977 kat.p

1 program kat(input, output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 read(ch);
8 write(ch)
9 end;

10 readln;
11 writeln
12 end
13 end { kat }.

Execution begins...
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated
925 statements executed in 0.27 seconds cpu time
%

Here we have used the shell’s syntax to redirect the program input from a file in primes in which we had
placed the output of our prime number program of section 2.6. It is also possible to ‘pipe’ input to this pro-
gram much as we piped input to the line printer daemon lpr (I) before. Thus, the same output as above
would be produced by

% cat primes | pix −−l kat.p

All of these examples use the shell to control the input and output from files. One very simple way to
associate Pascal files with named UNIX files is to place the file name in the program statement. For exam-
ple, suppose we have previously created the file data. We then use it as input to another version of a listing
program.

−30−

% cat data
line one.
line two.
line three is the end.
% pix −−l copydata.p
UNIX Pascal PI −− Version 1.0 (September 8, 1977)

Fri Sep 9 18:49 1977 copydata.p

1 program copydata(data, output);
2 var
3 ch: char;
4 data: text;
5 begin
6 reset(data);
7 while not eof(data) do begin
8 while not eoln(data) do begin
9 read(data, ch);

10 write(ch)
11 end;
12 readln(data);
13 writeln
14 end
15 end { copydata }.

Execution begins...
line one.
line two.
line three is the end.
Execution terminated
134 statements executed in 0.04 seconds cpu time
%

By mentioning the file data in the program statement, we have indicated that we wish it to correspond to
the UNIX file data. Then, when we ‘reset(data)’, the Pascal system opens our file ‘data’ for reading. More
sophisticated, but less portable, examples of using UNIX files will be given in sections 4.5 and 4.6. There is
a portability problem even with this simple example. Some Pascal systems attach meaning to the ordering
of the file in the program statement file list. UNIX Pascal does not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the interactive
environment offered by UNIX, relates to the definitions of eof and eoln. These functions are supposed to be
defined at the beginning of execution of a Pascal program, indicating whether the input device is at the end
of a line or the end of a file. Setting eof or eoln actually corresponds to an implicit read in which the input
is inspected, but no input is ‘‘used up’’. In fact, there is no way the system can know whether the input is at
the end-of-file or the end-of-line unless it attempts to read a line from it. If the input is from a previously
created file, then this reading can take place without run-time action by the user. Howev er, if the input is
from a terminal, then the input is what the user types.† If the system were to do an initial read automati-
cally at the beginning of program execution, and if the input were a terminal, the user would have to type
some input before execution could begin. This would make it impossible for the program to begin by
prompting for input or printing a herald.

UNIX Pascal has been designed so that an initial read is not necessary. At any giv en time, the Pascal
system may or may not know whether the end-of-file or end-of-line conditions are true. Thus, internally,

†It is not possible, in practice, to determine whether the input is a terminal, as the input may appear to be a file
but actually be a pipe, the output of a program which is reading from the terminal.

-31-

these functions can have three values − true, false, and ‘‘I don’t know yet; if you ask me I’ll have to find
out’’. All files remain in this last, indeterminate state until the Pascal program requires a value for eof or
eoln either explicitly or implicitly, e.g. in a call to read. The important point to note here is that if you force
the Pascal system to determine whether the input is at the end-of-file or the end-of-line, it will be necessary
for it to attempt to read from the input.

Thus consider the following example code

while not eof do begin
write(´number, please? ´);
read(i);
writeln(´that was a ´, i: 2)

end

At first glance, this may be appear to be a correct program for requesting, reading and echoing numbers.
Notice, however, that the while loop asks whether eof is true before the request is printed. This will force
the Pascal system to decide whether the input is at the end-of-file. The Pascal system will give no mes-
sages; it will simply wait for the user to type a line. By producing the desired prompting before testing eof,
the following code avoids this problem:

write(´number, please ?´);
while not eof do begin

read(i);
writeln(´that was a ´, i:2);
write(´number, please ?´)

end

The user must still type a line before the while test is completed, but the prompt will ask for it. This exam-
ple, however, is still not correct. To understand why, it is first necessary to know, as we will discuss below,
that there is a blank character at the end of each line in a Pascal text file. The read procedure, when reading
integers or real numbers, is defined so that, if there are only blanks left in the file, it will return a zero value
and set the end-of-file condition. If, however, there is a number remaining in the file, the end-of-file condi-
tion will not be set even if it is the last number, as read never reads the blanks after the number, and there is
always at least one blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the problem in
this example is to use the procedure readln instead of read here. In general, unless we test the end-of-file
condition both before and after calls to read or readln, there will be inputs for which our program will
attempt to read past end-of-file.

4.3. More about eoln

To hav e a good understanding of when eoln will be true it is necessary to know that in any file there
is a special character indicating end-of-line, and that, in effect, the Pascal system always reads one charac-
ter ahead of the Pascal read commands.† For instance, in response to ‘read(ch)’, the system sets ch to the
current input character and gets the next input character. If the current input character is the last character
of the line, then the next input character from the file is the new-line character, the normal UNIX line separa-
tor. When the read routine gets the new-line character, it replaces that character by a blank (causing every
line to end with a blank) and sets eoln to true. Eoln will be true as soon as we read the last character of the
line and before we read the blank character corresponding to the end of line. Thus it is almost always a
mistake to write a program which deals with input in the following way:

†In Pascal terms, ‘read(ch)’ corresponds to ‘ch := inputˆ; get(input)’

−32−

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The ‘read(ch)’ belongs as
part of the normal processing.

Given this framework, it is not hard to explain the function of a readln call, which is defined as:

while not eoln do
get(input);

get(input);

This advances the file until the blank corresponding to the end-of-line is the current input symbol and then
discards this blank. The next character available from read will therefore be the first character of the next
line, if one exists.

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering of the file
output. It is extremely inefficient for the Pascal system to send each character to the user’s terminal as the
program generates it for output; even less efficient if the output is the input of another program such as the
line printer daemon lpr (I). To gain efficiency, the Pascal system ‘‘buffers’’ the output characters (i.e. it
saves them in memory until the buffer is full and then emits the entire buffer in one system interaction.)
However, to allow interactive prompting to work as in the example given above, this prompt must be
printed before the Pascal system waits for a response. For this reason, Pascal normally prints all the output
which has been generated for the file output whenever

1) A writeln occurs, or

2) The program reads from the terminal, or

3) The procedure message or flush is called.

Thus, in the code sequence

for i := 1 to 5 do begin
write(i: 2);
Compute a lot with no output

end;
writeln

the output integers will not print until the writeln occurs. The delay can be somewhat disconcerting, and
you should be aware that it will occur. By setting the b option to 0 before the program statement by insert-
ing a comment of the form

(∗$b0∗)

we can cause output to be completely unbuffered, with a corresponding horrendous degradation in program
efficiency. Option control in comments is discussed in section 5.

4.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reset and re write to get more general
associations of UNIX file names with Pascal file variables. When a file other than input or output is to be
read or written, then the reading or writing must be preceded by a reset or re write call. In general, if the
Pascal file variable has never been used before, there will be no UNIX filename associated with it. As we
saw in section 2.9, by mentioning the file in the program statement, we could cause a UNIX file with the
same name as the Pascal variable to be associated with it. If we do not mention a file in the program state-
ment and use it for the first time with the statement

−33−

reset(f)

or

rewrite(f)

then the Pascal system will generate a temporary name of the form ‘tmp.x’ for some character ‘x’, and as-
sociate this UNIX file name name with the Pascal file. The first such generated name will be ‘tmp.1’ and the
names continue by incrementing their last character through the ASCII set. The advantage of using such
temporary files is that they are automatically removed by the Pascal system as soon as they become inacces-
sible. They are not removed, however, if a runtime error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can give that
name in the reset or re write call, e.g. we could have associated the Pascal file data with the file ‘primes’ in
our example in section 3.1 by doing:

reset(data, ´primes´)

instead of a simple

reset(data)

In this case it is not essential to mention ‘data’ in the program statement, but it is still a good idea because
is serves as an aid to program documentation. The second parameter to reset and re write may be any string
value, including a variable. Thus the names of UNIX files to be associated with Pascal file variables can be
read in at run time. Full details on file name/file variable associations are given in section A.3.

4.6. Argc and argv†

Each UNIX process receives a variable length sequence of arguments each of which is a variable
length character string. The built-in function argc and the built-in procedure argv can be used to access and
process these arguments. The value of the function argc is the number of arguments to the process. By
convention, the arguments are treated as an array, and indexed from 0 to argc−1, with the zeroth argument
being the name of the program being executed. The rest of the arguments are those passed to the command
on the command line. Thus, the command

% obj /etc/motd /usr/dict/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element accessed by argv
will be ‘obj’, the first ‘/etc/motd’, etc.

Pascal does not provide variable size arrays, nor does it allow character strings of varying length. For
this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly truncated or blank
padded) i ’th argument of the current process to the string variable a. The file manipulation routines reset
and re write will strip trailing blanks from their optional second arguments so that this blank padding is not
a problem in the usual case where the arguments are file names.

We are now ready to give a UNIX Pascal program ‘kat’, based on that given in section 3.1 above,
which can be used with the same syntax as the UNIX system program cat (I).

% cat kat.p
program kat(input, output);
var

ch: char;
i: integer;
name: packed array [1..100] of char;

begin
i := 1;

†Sections 4.6 and 4.7 deal with more advanced and system related issues that may not be of general interest.

−34−

repeat
if i < argc then begin

argv(i, name);
reset(input, name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);
write(ch)

end;
readln;
writeln

end
until i >= argc

end { kat }.
%

Note that the reset call to the file input here, which is necessary for a clear program, may be disallowed on
other systems. As this program deals mostly with argc and argv and UNIX system dependent considera-
tions, portability is of little concern.

If this program is in the file ‘kat.p’, then we can do

% pi kat.p
% mv obj kat
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

930 statements executed in 0.22 seconds cpu time
% kat
This is a line of text.
This is a line of text.
The next line contains only an end−−of−−file (an invisible control−−d!)
The next line contains only an end−of−file (an invisible control−d!)
287 statements executed in 0.09 seconds cpu time
%

Thus we see that, if it is given arguments, ‘kat’ will, like cat, copy each one in turn. If no arguments are
given, it copies from the standard input. Thus it will work as it did before, with

% kat < primes

now equivalent to

% kat primes

although the mechanisms are quite different in the two cases. Note that if ‘kat’ is given a bad file name, for
example:

−35−

% kat xxxxqqq
xxxxqqq: No such file or directory

Error at "kat"+5 near line 11

4 statements executed in 0.06 seconds cpu time
%

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were going to use
‘kat’, we might want to translate it differently, e.g.:

% pi −−pb kat.p
% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the traceback on
error. The b option will cause the system to block buffer the input/output so that the program will run more
efficiently on large files. We could have also specified the t option to turn off runtime tests if that was felt
to be a speed hindrance to the program. Thus we can try the last examples again:

% kat xxxxqqq
xxxxqqq: No such file or directory
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

%

The interested reader may wish to try writing a program which accepts command line arguments like
pi does, using argc and argv to process them.

-36-

5. Details on the components of the system

5.1. Options

The programs pi and

take a number of options.† There is a standard UNIX convention for passing options to programs on the
command line, and this convention is followed by the UNIX Pascal system programs. As we saw in
the examples above, option related arguments consisted of the character ‘−’ followed by a single
character option name. In fact, it is possible to place more than one option letter after a single ‘−’,
thus

% pi −−lz foo.p

and

% pi −−l −−z foo.p

are equivalent.

There are 26 options, one corresponding to each lower case letter. Except for the b option which
takes a single digit value, each option may be set on (enabled) or off (disabled.) When an on/off valued
option appears on the command line of pi or

Table of Contents

it inverts the default setting of that option. Thus

% pi −−l foo.p

enables the listing option l, since it defaults off, while

% pi −−t foo.p

disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also possible to
control the pi options within the body of the program by using comments of a special form illustrated by

{$l−}

Here we see that the opening comment delimiter (which could also be a ‘(∗’) is immediately followed
by the character ‘$’. After this ‘$’, which signals the start of the option list, we can place a sequence of let-
ters and option controls, separated by ‘,’ characters‡. The most basic actions for options are to set them,
thus

{$l+ Enable listing}

or to clear them

{$t−,p− No run−time tests, no post mortem analysis}

Notice that ‘+’ always enables an option and ‘−’ always disables it, no matter what the default is. Thus ‘−’
has a different meaning in an option comment than it has on the command line. As shown in the examples,
normal comment text may follow the option list.

†As pix uses pi to translate Pascal programs, it takes the options of pi also. We refer to them here, however, as
pi options.

‡This format was chosen because it is used by Pascal 6000-3.4. In general the options common to both imple-
mentations are controlled in the same way so that comment control in options is mostly portable. It is recom-
mended, however, that only one control be put per comment for maximum portability, as the Pascal 6000-3.4
implementation will ignore controls after the first one which it does not recognize.

-37-

5.2. Pi (and pix)

We now summarize the options of pi. These options may also be specified on the command line to
pix before the name of the file to be translated. Arguments to pix after the name of the file to be translated
are passed to the executed program run by px. With each option we give its default setting, the setting it
would have if it appeared on the command line, and a sample command using the option. Most options are
on/off valued, with the b option taking a single digit value.

Buffering of the file output − b

The b option controls the buffering of the file output. The default is line buffering, with flushing at
each reference to the file input and under certain other circumstances detailed in section 5 below. Mention-
ing b on the command line, e.g.

% pi −−b assembler.p

causes standard output to be block buffered, where a block is 512 characters. The b option may also be
controlled in comments. It, unique among the UNIX Pascal options, takes a single digit value rather than an
on or off setting. A value of 0, e.g.

{$b0}

causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is equivalent to
the flag on the command line. The option control comment setting b must precede the program statement.

Include file listing − i

The i option takes a list of include files, procedure and function names and causes these portions of
the program to be listed while translating†. All arguments after the −i flag up to the name of the file being
translated, which ends in ‘.p’, are in this list. Typical uses would be

% pix −−i scanner.i compiler.p

to make a listing of the routines in the file scanner.i, and

% pix −−i scanner compiler.p

to make a listing of only the routine scanner. This option is especially useful for conservation-minded pro-
grammers making partial program listings.

Make a listing − l

The l option enables a listing of the program. The l option defaults off. When specified on the com-
mand line, it causes a header line identifying the version of the translator in use and a line giving the modi-
fication time of the file being translated to appear before the actual program listing. The l option is pushed
and popped by the i option at appropriate points in the program.

Eject new pages for include files − n

The n option causes pi to eject a new page in the listing and print a header line at include file bound-
aries, providing automatic pagination control. To hav e effect, either the l or i option should also be speci-
fied, or the input should contain listing control in comments. An example would be

% pi −−in scan.i c.p

Post-mortem dump − p

The p option defaults on, and causes the runtime system to initiate a post-mortem backtrace when an
error occurs. It also cause px to count statements in the executing program, enforcing a statement limit to
prevent infinite loops. Specifying p on the command line disables these checks and the ability to give this
post-mortem analysis. It does make smaller and faster programs, however. It is also possible to control the

†Include files are discussed in section 5.9.

-38-

p option in comments. To prevent the post-mortem backtrace on error, p must be off at the end of the pro-
gram statement. Thus, the Pascal cross-reference program was translated with

% pi −−pbt pxref.p

Standard Pascal only − s

The s option causes many of the features of the UNIX implementation which are not found in standard
Pascal to be diagnosed as ‘s’ warning errors. This option defaults off and is enabled when mentioned on
the command line. Some of the features which are diagnosed are: non-standard procedures and functions,
extensions to the procedure write, and the padding of constant strings with blanks. In addition, all letters
are mapped to lower case except in strings and characters so that the case of keywords and identifiers is
effectively ignored. The s option is most useful when a program is to be transported, thus

% pi −−s isitstd.p

Runtime tests − t

The t option controls the generation of tests that subrange variable values are within bounds at run
time. By default these tests are generated. If the t option is specified on the command line, or in a com-
ment which turns it off, then the tests are not generated. Thus the first line of a program to run without tests
might be

{$t− No runtime tests}

Disabling runtime tests also causes assert statements to be treated as comments.†

Card image, 72 column input − u

Turning the u option on, either on the command line or in a comment causes the input to be treated as
card images with sequence numbers and truncated to 72 columns. Thus

% pix −−u cards.p

Suppress warning diagnostics − w

The w option, which defaults on, allows the translator to print a number of warnings about inconsis-
tencies it finds in the input program. Turning this option off with a comment of the form

{$w−}

or on the command line

% pi −−w tryme.p

suppresses these usually useful diagnostics.

Generate counters for an execution profile − z

The z option, which defaults off, enables the production of execution profiles. By specifying z on the
command line, i.e.

% pi −−z foo.p

or by enabling it in a comment before the program statement we cause pi to insert operations in the inter-
preter code to count the number of times each statement was executed. An example of using

was giv en in section 2.6; its options are described in section 5.5.

†See section A.1 for a description of assert statements.

-39-

5.3. Px

The first argument to px is the name of the file containing the program to be interpreted. If no argu-
ments are given, then the file obj is executed. If more arguments are given, they are available to the Pascal
program by using the built-ins argc and argv as described in section 4.6.

Px may also be invoked automatically by the shell†. In this case, whenever a Pascal object file name
is given as a command, the command will be executed with px prepended to it; that is

% obj primes

will be converted by the shell to read

% px obj primes

This feature makes using Pascal programs much more convenient.

5.4. Pxp

Pxp takes, on its command line, a list of options followed by the program file name, which must end
in ‘.p’ as it must for pi and pix.

will produce an execution profile if any of the z t or c options are specified on the command line. If none of
these options are specified, then

functions as a program reformatter. See section 5.5 for more details.

It is important to note that only the z option of

and the n, u, and w, options, which are common to pi and

can be controlled in comments. All other options must be specified on the command line to have any
effect.

The following options are relevant to profiling with

Include the bodies of all routines in the profile − a

Pxp normally suppresses printing the bodies of routines which were never executed, to make the pro-
file more compact. This option forces all routine bodies to be printed.

Extract profile data from the file core − c

This option causes

to extract the data from the file core in the current directory. This is used in debugging the Pascal system,
and should not normally be needed. When an abnormal termination occurs in px it writes the data to
the file pmon.out. The z option enables profiling with data from this file.

Suppress declaration parts from a profile − d

Normally a profile includes declaration parts. Specifying d on the command line suppresses declara-
tion parts.

Eliminate include directives − e

Normally,

preserves include directives to the output when reformatting a program, as though they were comments.
Specifying −e causes the contents of the specified files to be reformatted into the output stream
instead. This is an easy way to eliminate include directives, e.g. before transporting a program.

Fully parenthesize expressions − f

Normally

†This requires a modified shell. Such a shell is standard at Berkeley.

-40-

prints expressions with the minimal parenthesization necessary to preserve the structure of the input. This
option causes pxp to fully parenthesize expressions. Thus the statement which prints as

d := a + b mod c / e

with minimal parenthesization, the default, will print as

d := a + ((b mod c) / e)

with the f option specified on the command line.

Left justify all procedures and functions − j

Normally, each procedure and function body is indented to reflect its static nesting depth. This
option prevents this nesting and can be used if the indented output would be too wide.

Print a table summarizing procedure and function calls − t

The t option causes

to print a table summarizing the number of calls to each procedure and function in the program. It may be
specified in combination with the z option, or separately.

Enable and control the profile − z

The z profile option is very similar to the i listing control option of pi. If z is specified on the com-
mand line, then all arguments up to the source file argument which ends in ‘.p’ are taken to be the names of
procedures and functions or include files which are to be profiled. If this list is null, then the whole file is
to be profiled. A typical command for extracting a profile of part of a large program would be

% pxp −−z test parser.i compiler.p

This specifies that profiles of the routines in the file parser.i and the routine test are to be made.

5.5. Formatting programs using pxp

The program

can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Note that since the shell creates the output file ‘clean.p’ before

executes, so ‘clean.p’ and ‘dirty.p’ must not be the same file.

Pxp automatically paragraphs the program, performing housekeeping chores such as comment align-
ment, and treating blank lines, lines containing exactly one blank and lines containing only a form-feed
character as though they were comments, preserving their vertical spacing effect in the output. Pxp distin-
guishes between four kinds of comments:

1) Left marginal comments, which begin in the first column of the input line and are placed in the
first column of an output line.

2) Aligned comments, which are preceded by no input tokens on the input line. These are aligned
in the output with the running program text.

3) Trailing comments, which are preceded in the input line by a token with no more than two
spaces separating the token from the comment.

4) Right marginal comments, which are preceded in the input line by a token from which they are
separated by at least three spaces or a tab. These are aligned down the right margin of the out-
put, currently to the first tab stop after the 40th column from the current ‘‘left margin’’.

Consider the following program.

% cat comments.p
{ This is a left marginal comment. }

−41−

program hello(output);
var i : integer; {This is a trailing comment}
j : integer; {This is a right marginal comment}
k : array [1..10] of array [1..10] of integer; {Marginal, but past the margin}
{
An aligned, multi−line comment
which explains what this program is
all about

}
begin
i := 1; {Trailing i comment}
{A left marginal comment}
{An aligned comment}
j := 1; {Right marginal comment}
k[1] := 1;
writeln(i, j, k[1])
end.

When formatted by

the following output is produced.

% pxp comments.p
{ This is a left marginal comment. }
program hello(output);
var

i: integer; {This is a trailing comment}
j: integer; {This is a right marginal comment}
k: array [1..10] of array [1..10] of integer;

{Marginal, but past the margin}
{
An aligned, multi−line comment
which explains what this program is
all about

}
begin

i := 1; {Trailing i comment}
{A left marginal comment}

{An aligned comment}
j := 1; {Right marginal comment}
k[1] := 1;
writeln(i, j, k[1])

end.
%

The following formatting related options are currently available in

The options f and j described in the previous section may also be of interest.

Strip comments −s

The s option causes

to remove all comments from the input text.

Underline keywords −

A command line argument of the form − as in

−42−

% pxp −− dirty.p

can be used to cause

to underline all keywords in the output for enhanced readability.

Specify indenting unit − [23456789]

The normal unit which

uses to indent a structure statement level is 4 spaces. By giving an argument of the form −d with d a digit,
2 ≤ d ≤ 9 you can specify that d spaces are to be used per level instead.

5.6. Pcc and carriage control

The UNIX system printer driver does not implement FORTRAN style carriage control. Thus the func-
tion page on UNIX does not output a character ‘1’ in column 1 of a line, but rather puts out a form-feed
character. For those who wish to use carriage control, the filter pcc is available which interprets this con-
trol. A sample usage is:

% px | pcc

or

% pix prog.p | pcc | lpr

for printer copy. Pcc is fully described by its manual documentation pcc (VI).

5.7. Pxref

The cross-reference program pxref may be used to make cross-referenced listings of Pascal programs.
To produce a cross-reference of the program in the file ‘foo.p’ one can execute the command:

% pxref foo.p

The cross-reference is, unfortunately, not block structured. Full details on pxref are given in its manual sec-
tion pxref (VI).

5.8. Pascals

A version of Wirth’s subset Pascal translator pascals is available on UNIX. It was translated to inter-
preter code by pi and is invoked by a command of the form:

% pascals prog.p

The program in the file given is translated to interpretive code which is then immediately executed. Pascals
is thus similar to pix. Only small programs can be handled. Pascals is most interesting to those wishing to
study its error recovery techniques, which are described in Wirth’s book Algorithms + Data Structures =
Programs.

5.9. Multi-file programs

A text inclusion facility is available with UNIX Pascal. This facility allows the interpolation of source
text from other files into the source stream of the translator. It can be used to divide large programs into
more manageable pieces for ease in editing, listing, and maintenance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place the character
‘#’ in the first portion of a line and then, after an arbitrary number of blanks or tabs, the word ‘include’ fol-
lowed by a filename enclosed in single ‘´’ or double ‘"’ quotation marks. The file name may be followed
by a semicolon ‘;’ if you wish to treat this as a pseudo-Pascal statement. The filenames of included files
must end in ‘.i’. An example of the use of included files in a main program would be:

−43−

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i"
#include "parser.i"
#include "semantics.i"

begin
{ main program }

end.

At the point the include pseudo-statement is encountered in the input, the lines from the included file
are interpolated into the input stream. For the purposes of translate- and run-time diagnostics and statement
numbers in the listings and post-mortem backtraces, the lines in the included file are numbered from 1.
Nested includes are possible up to 10 deep.

See the descriptions of the i and n options of pi in section 5.2 above; these can be used to control list-
ing when include files are present.

Include control lines are never printed in a listing. If the n option is not set, they are replaced by a
line containing the file name and a ‘:’ character. This is the default setting. If the n new page option is
enabled then the include line is replaced with a banner line similar to the first line of a listing. This line is
placed on a new page in the listing.

When a non-trivial line is encountered in the source text after an include finishes, the ‘popped’ file-
name is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename will be printed before
each diagnostic if the current filename has changed since the last filename was printed.

-44-

A. Appendix to Wirth’s Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth’s Pascal Report
and, with that Report, precisely defines the UNIX implementation. This appendix includes a summary of
extensions to the language, gives the ways in which the undefined specifications were resolved, gives limi-
tations and restrictions of the current implementation, and lists the added functions and procedures avail-
able. It concludes with a list of differences with the commonly available Pascal 6000−3.4 implementation,
and some comments on standard and portable Pascal.

A.1. Extensions to the language Pascal

This section defines non-standard language constructs available in UNIX Pascal. The s standard Pas-
cal option of the translator pi can be used to detect these extensions in programs which are to be trans-
ported.

String padding

UNIX Pascal will pad constant strings with blanks in expressions and as value parameters to make
them as long as is required. The following is a legal UNIX Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z := ´red´;
writeln(z)

end;

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z := ´red ´

which is standard Pascal.

Octal constants, octal and hexadecimal write

Octal constants may be given as a sequence of octal digits followed by the character ‘b’ or ‘B’. The
forms

write(a:n oct)

and

write(a:n hex)

cause the internal representation of expression a, which must be Boolean, character, integer, pointer, or a
user-defined enumerated type, to be written in octal or hexadecimal respectively.

Assert statement

An assert statement causes a Boolean expression to be evaluated each time the statement is executed.
A runtime error results if any of the expressions evaluates to be false. The assert statement is treated as a
comment if run-time tests are disabled. The syntax for assert is:

assert <expr>

-45-

A.2. Resolution of the undefined specifications

File name − file variable associations

Each Pascal file variable is associated with a named UNIX file. Except for input and output, which are
exceptions to some of the rules, a name can become associated with a file in any of three ways:

1) If a global Pascal file variable appears in the program statement then it is associated with UNIX

file of the same name.

2) If a file was reset or rewritten using the extended two-argument form of reset or re write then
the given name is associated.

3) If a file which has never had UNIX name associated is reset or rewritten without specifying a
name via the second argument, then a temporary name of the form ‘tmp.x’ is associated with
the file. Temporary names start with ‘tmp.1’ and continue by incrementing the last character in
the USASCII ordering. Temporary files are removed automatically when their scope is exited.

The program statement

The syntax of the program statement is:

program <id> (<file id> { , <file id > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in the global dec-
laration part.

The files input and output

The formal parameters input and output are associated with the UNIX standard input and output and
have a somewhat special status. The following rules must be noted:

1) The program heading must contains the formal parameter output. If input is used, explicitly or
implicitly, then it must also be declared here.

2) Unlike all other files, the Pascal files input and output must not be defined in a declaration, as
their declaration is automatically:

var input, output: text

3) The procedure reset may be used on input. If no UNIX file name has ever been associated with
input, and no file name is given, then an attempt will be made to ‘rewind’ input. If this fails, a
run time error will occur. Rewrite calls to output act as for any other file, except that output
initially has no associated file. This means that a simple

rewrite(output)

associates a temporary name with output.

Details for files

If a file other than input is to be read, then reading must be initiated by a call to the procedure reset
which causes the Pascal system to attempt to open the associated UNIX file for reading. If this fails, then a
runtime error occurs. Writing of a file other than output must be initiated by a re write call, which causes
the Pascal system to create the associated UNIX file and to then open the file for writing only.

Buffering

The buffering for output is determined by the value of the b option at the end of the program state-
ment. If it has its default value 1, then output is buffered in blocks of up to 512 characters, flushed when-
ev er a writeln occurs and at each reference to the file input. If it has the value 0, output is unbuffered. Any
value of 2 or more gives block buffering without line or input reference flushing. All other output files are
always buffered in blocks of 512 characters. All output buffers are flushed when the files are closed at
scope exit, whenever the procedure message is called, and can be flushed using the built-in procedure flush.

-46-

An important point for an interactive implementation is the definition of ‘input↑’. If input is a tele-
type, and the Pascal system reads a character at the beginning of execution to define ‘input↑’, then no
prompt could be printed by the program before the user is required to type some input. For this reason,
‘input↑’ is not defined by the system until its definition is needed, reading from a file occurring only when
necessary.

The character set

Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols ‘and’, ’or’, ’not’,
’<=’, ’>=’, ’<>’, and the uparrow ‘↑’ (for pointer qualification) are recognized.† Less portable are the syn-
onyms tilde ‘˜’ for not, ‘&’ for and, and ‘|’ for or.

Upper and lower case are considered distinct. Ke ywords and built-in procedure and function names
are composed of all lower case letters. Thus the identifiers GOTO and GOto are distinct both from each
other and from the keyword goto. The standard type ‘boolean’ is also available as ‘Boolean’.

Character strings and constants may be delimited by the character ‘´’ or by the character ‘#’; the lat-
ter is sometimes convenient when programs are to be transported. Note that the ‘#’ character has special
meaning when it is the first character on a line − see Multi-file programs below.

The standard types

The standard type integer is conceptually defined as

type integer = minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of type integer are:

const maxint = 2147483647; minint = −2147483648;

The standard type char is conceptually defined as

type char = minchar .. maxchar;

Built-in character constants are ‘minchar’ and ‘maxchar’, ‘bell’ and ‘tab’; ord(minchar) = 0, ord(maxchar)
= 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point arithmetic is
done in ‘rounded’ mode, and provides approximately 17 digits of precision with numbers as small as 10 to
the negative 38th power and as large as 10 to the 38th power.

Comments

Comments can be delimited by either ‘{’ and ‘}’ or by ‘(∗’ and ‘∗)’. If the character ‘{’ appears in a
comment delimited by ‘{’ and ‘}’, a warning diagnostic is printed. A similar warning will be printed if the
sequence ‘(∗’ appears in a comment delimited by ‘(∗’ and ‘∗)’. The restriction implied by this warning is
not part of standard Pascal, but detects many otherwise subtle errors.

Option control

Options of the translator may be controlled in two distinct ways. A number of options may appear on
the command line invoking the translator. These options are given as one or more strings of letters pre-
ceded by the character ‘−’ and cause the default setting of each given option to be changed. This method of
communication of options is expected to predominate for UNIX. Thus the command

% pi −ls foo.p

translates the file foo.p with the listing option enabled (as it normally is off), and with only standard Pascal
features available.

†On many terminals and printers, the up arrow is represented as a circumflex ‘ˆ’. These are not distinct charac-
ters, but rather different graphic representations of the same internal codes.

-47-

If more control over the portions of the program where options are enabled is required, then option
control in comments can and should be used. The format for option control in comments is identical to that
used in Pascal 6000−3.4. One places the character ‘$’ as the first character of the comment and follows it
by a comma separated list of directives. Thus an equivalent to the command line example given above
would be:

{$l+,s+ listing on, standard Pascal}

as the first line of the program. The ‘l’ option is more appropriately specified on the command line, since it
is extremely unlikely in an interactive environment that one wants a listing of the program each time it is
translated.

Directives consist of a letter designating the option, followed either by a ‘+’ to turn the option on, or
by a ‘−’ to turn the option off. The b option takes a single digit instead of a ‘+’ or ‘−’.

Notes on the listings

The first page of a listing includes a banner line indicating the version and date of generation of pi. It
also includes the UNIX path name supplied for the source file and the date of last modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the line numbers
for the editor. Currently, two special kinds of lines may be used to format the listing: a line consisting of a
form-feed character, control-l, which causes a page eject in the listing, and a line with no characters which
causes the line number to be suppressed in the listing, creating a truly blank line. These lines thus corre-
spond to ‘eject’ and ‘space’ macros found in many assemblers. Non-printing characters are printed as the
character ‘?’ in the listing.†

Multi-file programs

It is also possible to prepare programs whose parts are placed in more than one file. The files other
than the main one are called include files and have names ending with ‘.i’. The contents of an include file
are referenced through a pseudo-statement of the form:

#include "file.i"

The ‘#’ character must be the first character on the line. The file name may be delimited with ‘"’ or ‘´’
characters. Nested includes are possible up to 10 deep. More details are given in sections 5.9 and 5.10.

The standard procedure write

If no minimum field length parameter is specified for a write, the following default values are
assumed:

integer 10
real 22
Boolean 10
char 1
string length of the string
oct 11
hex 8

The end of each line in a text file should be explicitly indicated by ‘writeln(f)’, where ‘writeln(output)’ may
be written simply as ‘writeln’. For UNIX, the built-in function ‘page(f)’ puts a single ASCII form-feed char-
acter on the output file. For programs which are to be transported the filter pcc can be used to interpret car-
riage control, as UNIX does not normally do so.

†The character generated by a control-i indents to the next ‘tab stop’. Tab stops are set every 8 columns in UNIX.
Tabs thus provide a quick way of indenting in the program.

-48-

A.3. Restrictions and limitations

Files

Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arithmetic. This
restricts the types over which arrays and sets may be defined. The lower bound of such a range must be
greater than or equal to −32768, and the upper bound less than 32768. In particular, strings may have any
length from 1 to 32767 characters, and sets may contain no more than 32767 elements.

Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be distinct if they
differ in any single position over their entire length. There is a limit, however, on the maximum input line
length. This is quite generous however, currently exceeding 160 characters.

Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamental, transla-
tor defined limit on the size of the program which can be translated. The ultimate limit is supplied by the
hardware and the fact that the PDP-11 has a 16 bit address space. If one runs up against the ‘ran out of
memory’ diagnostic the program may yet translate if smaller procedures are used, as a lot of space is freed
by the translator at the completion of each procedure or function in the current implementation.

Overflow

There is currently no checking for overflow on arithmetic operations at run-time.

A.4. Added types, operators, procedures and functions

Additional predefined types

The type alfa is predefined as:

type alfa = packed array [1..10] of char

The type intset is predefined as:

type intset = set of 0..127

In most cases the context of an expression involving a constant set allows the translator to determine the
type of the set, even though the constant set itself may not uniquely determine this type. In the cases where
it is not possible to determine the type of the set from local context, the expression type defaults to a set
over the entire base type unless the base type is integer†. In the latter case the type defaults to the current
binding of intset, which must be ‘‘type set of (a subrange of) integer’’ at that point.

Note that if intset is redefined via:

type intset = set of 0..58;

then the default integer set is the implicit intset of Pascal 6000−3.4

Additional predefined operators

The relationals ‘<’ and ‘>’ of proper set inclusion are available. With a and b sets, note that

(not (a < b)) <> (a >= b)

†The current translator makes a special case of the construct ‘if ... in [...]’ and enforces only the more lax
restriction on 16 bit arithmetic given above in this case.

−49−

As an example consider the sets a = [0,2] and b = [1]. The only relation true between these sets is ‘<>’.

Non-standard procedures

argv(i,a) where i is an integer and a is a string variable assigns the (possibly truncated
or blank padded) i ’th argument of the invocation of the current UNIX process
to the variable a. The range of valid i is 0 to argc−1.

date(a) assigns the current date to the alfa variable a in the format ‘dd mmm yy ’,
where ‘mmm’ is the first three characters of the month, i.e. ‘Apr’.

flush(f) writes the output buffered for Pascal file f into the associated UNIX file.

halt terminates the execution of the program with a control flow backtrace.

linelimit(f,x)‡ with f a textfile and x an integer expression causes the program to be abnor-
mally terminated if more than x lines are written on file f. If x is less than 0
then no limit is imposed.

message(x,...) causes the parameters, which have the format of those to the built-in proce-
dure write, to be written unbuffered on the diagnostic unit 2, almost always
the user’s terminal.

null a procedure of no arguments which does absolutely nothing. It is useful as a
place holder, and is generated by

in place of the invisible empty statement.

remove(a) where a is a string causes the UNIX file whose name is a, with trailing blanks
eliminated, to be removed.

reset(f,a) where a is a string causes the file whose name is a (with blanks trimmed) to
be associated with f in addition to the normal function of reset.

rewrite(f,a) is analogous to ‘reset’ above.

stlimit(i) where i is an integer sets the statement limit to be i statements. Specifying
the p option to pc disables statement limit counting.

time(a) causes the current time in the form ‘ hh:mm:ss ’ to be assigned to the alfa
variable a.

Non-standard functions

argc returns the count of arguments when the Pascal program was invoked. Argc
is always at least 1.

card(x) returns the cardinality of the set x, i.e. the number of elements contained in
the set.

clock returns an integer which is the number of central processor milliseconds of
user time used by this process.

expo(x) yields the integer valued exponent of the floating-point representation of x;
expo(x) = entier(log2(abs(x))).

random(x) where x is a real parameter, evaluated but otherwise ignored, invokes a linear
congruential random number generator. Successive seeds are generated as
(seed∗a + c) mod m and the new random number is a normalization of the
seed to the range 0.0 to 1.0; a is 62605, c is 113218009, and m is
536870912. The initial seed is 7774755.

seed(i) where i is an integer sets the random number generator seed to i and returns
the previous seed. Thus seed(seed(i)) has no effect except to yield value i.

sysclock an integer function of no arguments returns the number of central processor
milliseconds of system time used by this process.

‡Currently ignored by px.

-50-

undefined(x) a Boolean function. Its argument is a real number and it always returns
false.

wallclock an integer function of no arguments returns the time in seconds since
00:00:00 GMT January 1, 1970.

A.5. Remarks on standard and portable Pascal

It is occasionally desirable to prepare Pascal programs which will be acceptable at other Pascal
installations. While certain system dependencies are bound to creep in, judicious design and programming
practice can usually eliminate most of the non-portable usages. Wirth’s Pascal Report concludes with a
standard for implementation and program exchange.

In particular, the following differences may cause trouble when attempting to transport programs
between this implementation and Pascal 6000−3.4. Using the s translator option may serve to indicate
many problem areas.†

Features not available in UNIX Pascal

Formal parameters which are procedure or function.

Segmented files and associated functions and procedures.

The function trunc with two arguments.

Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in UNIX Pascal but not in Pascal 6000-3.4

The procedures reset and re write with file names.

The functions argc, seed, sysclock, and wallclock.

The procedures argv, flush, and remove.

Message with arguments other than character strings.

Write with keyword hex.

The assert statement.

Other problem areas

Sets and strings are more general in UNIX Pascal; see the restrictions given in the Jensen-Wirth User
Manual for details on the 6000−3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr, characters as
arguments to ord, and comparisons of characters, since the character set ordering differs between the two
machines.

The Pascal 6000−3.4 compiler uses a less strict notion of type equivalence. In UNIX Pascal, types are
considered identical only if they are represented by the same type identifier. Thus, in particular, unnamed
types are unique to the variables/fields declared with them.

Pascal 6000−3.4 doesn’t recognize our option flags, so it is wise to put the control of UNIX Pascal
options to the end of option lists or, better yet, restrict the option list length to one.

For Pascal 6000−3.4 the ordering of files in the program statement has significance. It is desirable to
place input and output as the first two files in the program statement.

†The s option does not, however, check that identifiers differ in the first 8 characters. Pi also does not check the
semantics of packed.

