
Using ADB to Debug the UNIX† Kernel
Revised January, 1983

Samuel J. Leffler

William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes the use of extensions made to the 4.1bsd release of the
VAX* UNIX debugger adb for the purpose of debugging the UNIX kernel. It discusses
the changes made to allow standard adb commands to function properly with the kernel
and introduces the basics necessary for users to write adb command scripts which may be
used to augment the standard adb command set. The examination techniques described
here may be applied to running systems, as well as the post-mortem dumps automatically
created by the savecore(8) program after a system crash. The reader is expected to have
at least a passing familiarity with the debugger command language.

†UNIX is a Trademark of Bell Laboratories.

*DEC and VAX are trademarks of Digital Equipment Corporation.

11 August 2004

Using ADB on the UNIX Kernel Introduction

1. INTRODUCTION

Modifications have been made to the standard VAX UNIX debugger adb to simplify examination of
post-mortem dumps automatically generated following a system crash. These changes may also be used
when examining UNIX in its normal operation. This document serves as an introduction to the use of these
facilities, and should not be construed as a description of how to debug the kernel.

0.1. Invocation

When examining the UNIX kernel a new option, −k, should be used, e.g.

adb −k /vmunix /dev/mem

This flag causes adb to partially simulate the VAX virtual memory hardware when accessing the core file.
In addition the internal state maintained by the debugger is initialized from data structures maintained by
the UNIX kernel explicitly for debugging‡. A post-mortem dump may be examined in a similar fashion,

adb −k vmunix.? vmcore.?

where the appropriate version of the saved operating system image and core dump are supplied in place of
‘‘?’’.

0.2. Establishing Context

During initialization adb attempts to establish the context of the ‘‘currently active process’’ by exam-
ining the value of the kernel variable masterpaddr. This variable contains the virtual address of the process
context block of the last process which was set executing by the Swtch routine. Masterpaddr normally pro-
vides sufficient information to locate the current stack frame (via the stack pointers found in the context
block). By locating the VAX process context block for the process, adb may then perform virtual to physi-
cal address translation using that process’s in-core page tables.

When examining post-mortem dumps locating the most recent stack frame of the ‘‘currently active
process’’ is nontrivial. This is due to the different ways in which the VAX may save state after a nonrecov-
erable error. Crashes may or may not be ‘‘clean’’ (i.e. the top of the interrupt stack contains the process’s
kernel mode stack pointer and program counter); an ‘‘unclean’’ crash will occur, for instance, if the inter-
rupt stack overflows. Thus, one must manually try one of two possible techniques to get a stack trace from
a post-mortem dump. If the crash was clean the current stack pointer is present in the restart parameter
block, at scb−4 (or rpb+1fc), and the command

*(scb−4)$c

will generate a stack trace all the way from the kernel to the top of the user process’s stack (e.g. to the main
routine in the user process which was running). Otherwise, one must scan through the interrupt stack look-
ing for the stack frame. This is usually indicated by a zero longword entry (the procedure call handler) fol-
lowed by a longword entry with bit 29 set (indicating the call frame was generated as a result of a ‘‘calls’’
instruction).

intstack/X

Once the stack pointer has been located, the command

will generate a stack trace. An alternate method may be used when a trace of a particular

‡ If the −k flag is not used when invoking adb the user must explicitly calculate virtual addresses. With the −k
option adb interprets page tables to automatically perform virtual to physical address translation.

11 August 2004

Using ADB on the UNIX Kernel - 2 - Introduction

process is required, see section 2.3.

11 August 2004

Using ADB on the UNIX Kernel - 3 - Command Scripts

2. ADB COMMAND SCRIPTS

2.1. Extending the Formatting Facilities

Once the process context has been established, the complete adb command set is available for inter-
preting data structures. In addition, a number of adb scripts have been created to simplify the structured
printing of commonly referenced kernel data structures. The scripts normally reside in the directory
/usr/lib/adb, and are invoked with the ‘‘$<’’ operator. (A later table lists the ‘‘standard’’ scripts.)

As an example, consider the following listing which contains a dump of a faulty process’s state (our
typing is shown emboldened).

% adb −k vmunix.17 vmcore.17
sbr 8001d064 slr d9c
p0br 800efa00 p0lr 34 p1br 7f8efe00 p1lr 1ffff2
*(intstack−4)$c
_boot() from 80004025
_boot(0,4) from 80004025
_panic(80021185) from 800057e2
_soreceive(8017478c,0) from 80007c90
_read() from 800098d7
_syscall() from 8000b6e2
_Xsyscall(3,7fffe834,258) from 80000f64
?() from c1c
?() from 26a
?(0,7fffef18,7fffef1c) from 1d3
?() from 2f
800021185/s
_icpreg+99: receive
u$<u
_u:
_u: ksp usp

7fffff9c 7fffe59c
r0 r1 r2 r3
155c00 800237d4 80041800 3
r4 r5 r6 r7
0 0 11090 80041800
r8 r9 r10 r11
80021244 c 7fffe5b4 80000000
ap fp pc psl
7fffffe8 7fffff a4 8000b784 d80004
p0br p0lr p1br p1lr
800efa00 4000034 7f8efe00 1ffff2
szpt cmap2 sswap
2 94000307 0
sigc1 sigc2 sigc3
1af03fb fa007f02 40cbc6c

_u+78: arg0 arg1 arg2
3 7fffe834 258

_u+8c: segflg error uid gid ruid rgid procp
0 0 4 a 4 a 80041800

_u+d4: uap rv1 rv2 ubase
7ffff078 0 1 7fffe834

11 August 2004

Using ADB on the UNIX Kernel - 4 - Command Scripts

count off cdir rdir
258 150 8003cf00 0

_u+f4: pathname
.netrc
dirp dino entry pdir
3 1395 .netrc0

7ffff11c: ofiles
80040818 80040818 80040818 800406b0
800406d4 800406ec 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ofileflg
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0

7ffff180: sigs
0 360c 1 360c
0 0 0 aae
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

code ar0 prbase prsize
0 80000000 0 0

7ffff248: proff prscal eosys sep ttyp
0 0 0 0 800288b4

7ffff258: ttymin ttymaj
0 0

7ffff25e: xmag xtsiz xdsiz xbsiz
3c000000 10000000 108c0000 a680000

xssiz entloc relflg
0 0 6c720000

7ffff27e: directory
ogin
start acflg fpflg cmsk tsiz dsiz
11688 0 12 0 160000 60000

7ffff2a2: ssiz
80000

80041800$<proc
80041800: link rlink addr

800237d4 0 800efde0
8004180c: upri pri cpu stat time nice slp cursig

073 073 045 03 023 024 0 0
80041814: sig siga0 siga1 flag

0 80002 45 8001

11 August 2004

Using ADB on the UNIX Kernel - 5 - Command Scripts

80041824: uid pgrp pid ppid poip szpt tsize
4 bb bc bb 0 2 1e

80041834: dsize ssize rssize maxrss
16 6 14 3fffff

80041844: swrss swaddr wchan textp
0 0 0 80044ee0

80041854: clktim p0br xlink ticks
0 800efa00 80041720 22

80041864: %cpu ndx idhash pptr
+5.1369253545999527e−02 1c 8 80041720

80044ee0$<text
80044ee0: daddr

7e2 0 0 0
0 0 0 0
0 0 0 0

ptdaddr size caddr iptr
352 1e 80041800 8003cfa0

rssize swrss count ccount flag slptim poip
1a 0 02 02 042 0 0

The cause of the crash was a ‘‘panic’’ (see the stack trace) due to the 0 argument passed the soreceive
routine. The majority of the dump was done to illustrate the use of two command scripts used to format
kernel data structures. The ‘‘u’’ script, invoked by the command ‘‘u$<u’’, is a lengthy series of commands
which pretty-prints the user vector. Likewise, ‘‘proc’’ and ‘‘text’’ are scripts used to format the obvious
data structures. Let’s quickly examine the ‘‘text’’ script (the script has been broken into a number of lines
for convenience here; in actuality it is a single line of text).

./"daddr"n12Xn\
"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn\
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx++n

The first line produces the list of disk block addresses associated with a swapped out text segment. The
‘‘n’’ format forces a new-line character, with 12 hexadecimal integers printed immediately after. Likewise,
the remaining two lines of the command format the remainder of the text structure. The expression ‘‘16t’’
causes adb to tab to the next column which is a multiple of 16. The last two plus operators are present to
round ‘‘.’’ to the end of the text structure. This allows the user to reinvoke the format on consecutive text
structures without having to be concerned about proper alignment of ‘‘.’’.

The majority of the scripts provided are of this nature. When possible, the formatting scripts print a
data structure with a single format to allow subsequent reuse when interrogating arrays of structures. That
is, the previous script could have been written

./"daddr"n12Xn
+/"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn
+/"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx++n

but then reuse of the format would have inv oked only the last line of the format.

2.2. Traversing Data Structures

The adb command language can be used to traverse complex data structures. One such data struc-
ture, a linked list, occurs quite often in the kernel. By using adb variables and the normal expression opera-
tors it is a simple matter to construct a script which chains down the list printing each element along the
way.

11 August 2004

Using ADB on the UNIX Kernel - 6 - Command Scripts

For instance, the queue of processes awaiting timer events, the callout queue, is printed with the fol-
lowing two scripts:

callout:

calltodo/"time"16t"arg"16t"func"12+
*+$<callout.next

callout.next:

./Dpp
*+>l
,#<l$<
<l$<callout.next

The first line of the script callout starts the traversal at the global symbol calltodo and prints a set of
headings. It then skips the empty portion of the structure used as the head of the queue. The second line
then invokes the script callout.next moving ‘‘.’’ to the top of the queue (‘‘*+’’ performs the indirection
through the link entry of the structure at the head of the queue).

callout.next prints values for each column, then performs a conditional test on the link to the next
entry. This test is performed as follows,

*+>l Place the value of the ‘‘link’’ in the adb variable ‘‘<l’’.

,#<l$< If the value stored in ‘‘<l’’ is non-zero, then the current input stream (i.e. the script callout.next)
is terminated. Otherwise, the expression ‘‘#<l’’ will be zero, and the ‘‘$<’’ will be ignored.
That is, the combination of the logical negation operator ‘‘#’’, adb variable ‘‘<l’’, and ‘‘$<’’
operator creates a statement of the form,

if (!link) exit;

The remaining line of callout.next simply reapplies the script on the next element in the linked
list.

A sample callout dump is shown below.

% adb −k /vmunix /dev/mem
sbr 8001f864 slr d9c
p0br 800efa00 p0lr 8e p1br 7f8efe00 p1lr 1ffff2
$<callout
_calltodo:
_calltodo: time arg func
8004ecfc: 26 0 _dzscan
8004ed0c: 8 0 _upwatch
8004ed1c: 0 0 _ip_timeo
8004ed5c: 0 0 _tcp_timeo
8004ed6c: 0 0 _rkwatch
8004ecfc: 52 0 _dzscan
8004ed2c: 68 _Syssize+70 _tmtimer
8004ed3c: 2920 0 _memenable

2.3. Supplying Parameters

If one is clever, a command script may use the address and count portions of an adb command as
parameters. An example of this is the setproc script used to switch to the context of a process with a
known process-id;

11 August 2004

Using ADB on the UNIX Kernel - 7 - Command Scripts

0t99$<setproc

The body of setproc is

.>4
*nproc>l
*proc>f
$<setproc.nxt

while setproc.nxt is

(*(<f+28))&0xffff="pid "X
,#((*(<f+28)&0xffff)-<4)$<setproc.done
<l-1>l
<f+70>f
,#<l$<
$<setproc.nxt

The process-id, supplied as the parameter, is stored in the variable ‘‘<4’’, the number of processes is placed
in ‘‘<l’’, and the base of the array of process structures in ‘‘<f ’’. setproc.nxt then performs a linear search
through the array until it matches the process-id requested, or until it runs out of process structures to
check. The script setproc.done simply establishes the context of the process, then exits.

2.4. Standard Scripts

The following table summarizes the command scripts currently available in the directory /usr/lib/adb.

11 August 2004

Using ADB on the UNIX Kernel - 8 - Command Scripts

Standard Command Scripts

Name Use Description

buf addr$<buf format block I/O buffer
callout $<callout print timer queue
clist addr$<clist format character I/O linked list
dino addr$<dino format directory inode
dir addr$<dir format directory entry
dirblk addr$<dirblk scan directory entries
file addr$<file format open file structure
fs addr$<filsys format in-core super block structure
findproc pid$<findproc find process by process id
hosts addr$<hosts format IMP host table entries
hosttable addr$<hosttable show all IMP host table entries
ifnet addr$<ifnet format network interface structure
ifuba addr$<ifuba format UNIBUS resource structure
inode addr$<inode format in-core inode structure
inpcb addr$<inpcb format internet protocol control block
iovec addr$<iovec format a list of iov structures
ipreass addr$<ipreass format an ip reassembly queue
mact addr$<mact show ‘‘active’’ list of mbuf ’s
mbstat $<mbstat show mbuf statistics
mbuf addr$<mbuf show ‘‘next’’ list of mbuf ’s
mbufs addr$<mbufs show a number of mbuf ’s
mount addr$<mount format mount structure
pcb addr$<pcb format process context block
proc addr$<proc format process table entry
rawcb addr$<rawcb format a raw protocol control block
rtentry addr$<rtentry format a routing table entry
setproc pid$<setproc switch process context to pid
socket addr$<socket format socket structure
tcpcb addr$<tcpcb format TCP control block
tcpip addr$<tcpip format a TCP/IP packet header
tcpreass addr$<tcpreass show a TCP reassembly queue
text addr$<text format text structure
traceall $<traceall show stack trace for all processes
tty addr$<tty format tty structure
u addr$<u format user vector, including pcb
ubahd addr$<ubahd format a UNIBUS header structure

11 August 2004

Using ADB on the UNIX Kernel - 9 - Summary

3. SUMMARY

The extensions made to adb provide basic support for debugging the UNIX kernel by eliminating the
need for a user to carry out virtual to physical address translation. A collection of scripts have been written
to nicely format the major kernel data structures and aid in switching between process contexts. This has
been carried out with only minimal changes to the debugger.

More work is needed to provide enough information for the debugger to automatically establish con-
text after a system crash. The system currently does not always save enough state to allow the debugger to
reliably locate the stack frame just prior to an exception.

More work is also required on the user interface to adb. It appears the inscrutable adb command lan-
guage has limited widespread use of much of the power of adb. One possibility is to provide a more com-
prehensible ‘‘adb frontend’’, just as bc(1) is used to frontend dc(1).

Finally, adb could be significantly improved if it were knowledgeable about a program’s data struc-
tures. This would eliminate the use of numeric offsets into C structures.

11 August 2004

