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ABSTRACT

This document summarizes the facilities provided by the 4.2BSD version of the
UNIX operating system. It does not attempt to act as a tutorial for use of the system nor
does it attempt to explain or justify the design of the system facilities. It gives neither
motivation nor implementation details, in favor of brevity.

The first section describes the basic kernel functions provided to a UNIX process:
process naming and protection, memory management, software interrupts, object refer-
ences (descriptors), time and statistics functions, and resource controls. These facilities,
as well as facilities for bootstrap, shutdown and process accounting, are provided solely
by the kernel.

The second section describes the standard system abstractions for files and file sys-
tems, communication, terminal handling, and process control and debugging. These
facilities are implemented by the operating system or by network server processes.

* UNIX is a trademark of Bell Laboratories.
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1. Notation and types

The notation used to describe system calls is a variant of a C language call, consisting of a prototype
call followed by declaration of parameters and results. An additional keyword result, not part of the nor-
mal C language, is used to indicate which of the declared entities receive results. As an example, consider
the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the second line cc
is an integer and read also returns information in the parameter buf.

Description of all error conditions arising from each system call is not provided here; they appear in
the programmer’s manual. In particular, when accessed from the C language, many calls return a character-
istic −1 value when an error occurs, returning the error code in the global variable errno. Other languages
may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and used in the spec-
ifications here and in many C programs. These include caddr_t giving a memory address (typically as a
character pointer), off_t giving a file offset (typically as a long integer), and a set of unsigned types u_char,
u_short, u_int and u_long, shorthand names for unsigned char, unsigned short, etc.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.



4.2BSD System Manual -2- Kernel primitives

2. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel facilities
directly implemented by UNIX code running in the operating system, and system facilities implemented
either by the system, or in cooperation with a server process. These kernel facilities are described in this
section 1.

The facilities implemented in the kernel are those which define the UNIX virtual machine which each
process runs in. Like many real machines, this virtual machine has memory management hardware, an
interrupt facility, timers and counters. The UNIX virtual machine also allows access to files and other
objects through a set of descriptors. Each descriptor resembles a device controller, and supports a set of
operations. Like devices on real machines, some of which are internal to the machine and some of which
are external, parts of the descriptor machinery are built-in to the operating system, while other parts are
often implemented in server processes on other machines. The facilities provided through the descriptor
machinery are described in section 2.
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2.1. Processes and protection

2.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255 characters.
These are set (by a privileged user) and returned by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len)
char *name; int len;

len = gethostname(buf, buflen)
result int len; result char *buf; int buflen;

On each host runs a set of processes. Each process is largely independent of other processes, having its
own protection domain, address space, timers, and an independent set of references to system or user
implemented objects.

Each process in a host is named by an integer called the process id. This number is in the range
1-30000 and is returned by the getpid routine:

pid = getpid();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the (hostid, pro-
cess id) pairs are guaranteed unique.

2.1.2. Process creation and termination

A new process is created by making a logical duplicate of an existing process:

pid = fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the child, and
once in the child process where pid is 0. The parent-child relationship induces a hierarchical structure on
the set of processes in the system.

A process may terminate by executing an exit call:

exit(status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives information about
any event which caused termination of the child process. A second call provides a non-blocking interface
and may also be used to retrieve information about resources consumed by the process during its lifetime.
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#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing the newly created
process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a binary executable
file or a file which causes the execution of a specified interpreter program to process its contents.

2.1.3. User and group ids

Each process in the system has associated with it two user-id’s: a real user id and a effective user id,
both non-negative 16 bit integers. Each process has an real accounting group id and an effective account-
ing group id and a set of access group id’s. The group id’s are non-negative 16 bit integers. Each process
may be in several different access groups, with the maximum concurrent number of access groups a system
compilation parameter, the constant NGROUPS in the file <sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

ruid = getuid();
result int ruid;

euid = geteuid();
result int euid;

the real and effective accounting group ids by:

rgid = getgid();
result int rgid;

egid = getegid();
result int egid;

and the access group id set is returned by a getgroups call:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id’s are assigned at login time using the setreuid, setregid, and setgroups calls:

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)
int gidsetsize; int gidset[gidsetsize];

The setreuid call sets both the real and effective user-id’s, while the setregid call sets both the real and
effective accounting group id’s. Unless the caller is the super-user, ruid must be equal to either the current
real or effective user-id, and rgid equal to either the current real or effective accounting group id. The
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setgroups call is restricted to the super-user.

2.1.4. Process groups

Each process in the system is also normally associated with a process group. The group of processes
in a process group is sometimes referred to as a job and manipulated by high-level system software (such as
the shell). The current process group of a process is returned by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

When a process is in a specific process group it may receive software interrupts affecting the group, causing
the group to suspend or resume execution or to be interrupted or terminated. In particular, a system termi-
nal has a process group and only processes which are in the process group of the terminal may read from
the terminal, allowing arbitration of terminals among several different jobs.

The process group associated with a process may be changed by the setpgrp call:

setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id’s distinct from all processes and process groups, and the
same process group as their parent. A normal (unprivileged) process may set its process group equal to its
process id. A privileged process may set the process group of any process to any value.
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2.2. Memory management†

2.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and stack. The
text area is read-only and shared, while the data and stack areas are private to the process. Both the data
and stack areas may be extended and contracted on program request. The call

addr = sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed. On the VAX
the text and data areas are adjacent in the P0 region, while the stack section is in the P1 region, and grows
downward.

2.2.2. Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped into mem-
ory. These mapped pages may be shared with other processes or private to the process. Protection and
sharing options are defined in <mman.h> as:

/* protections are chosen from these bits, or-ed together */
#define PROT_READ 0x4 /* pages can be read */
#define PROT_WRITE 0x2 /* pages can be written */
#define PROT_EXEC 0x1 /* pages can be executed */

/* sharing types; choose either SHARED or PRIVATE */
#define MAP_SHARED 1 /* share changes */
#define MAP_PRIVATE 2 /* changes are private */

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;

The call:

mmap(addr, len, prot, share, fd, pos);
caddr_t addr; int len, prot, share, fd; off_t pos;

causes the pages starting at addr and continuing for len bytes to be mapped from the object represented by
descriptor fd, at absolute position pos. The parameter share specifies whether modifications made to this
mapped copy of the page, are to be kept private, or are to be shared with other references. The parameter
prot specifies the accessibility of the mapped pages. The addr, len, and pos parameters must all be multi-
ples of the pagesize.

A process can move pages within its own memory by using the mremap call:

mremap(addr, len, prot, share, fromaddr);
caddr_t addr; int len, prot, share; caddr_t fromaddr;

This call maps the pages starting at fromaddr to the address specified by addr.

A mapping can be removed by the call

† This section represents the interface planned for later releases of the system. Of the calls described in this
section, only sbrk and getpagesize are included in 4.2BSD.
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munmap(addr, len);
caddr_t addr; int len;

This causes further references to these pages to refer to private pages initialized to zero.

2.2.3. Page protection control

A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prot .

2.2.4. Giving and getting advice

A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as giv en in <mman.h>:

#define MADV_NORMAL 0 /* no further special treatment */
#define MADV_RANDOM 1 /* expect random page references */
#define MADV_SEQUENTIAL 2 /* expect sequential references */
#define MADV_WILLNEED 3 /* will need these pages */
#define MADV_DONTNEED 4 /* don’t need these pages */

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addr, len, vec)
caddr_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vec, with a value of 1 mean-
ing that the page is in-core.
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2.3. Signals

2.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process con-
text is saved, and a new one is built. A process may specify the handler to which a signal is delivered, or
specify that the signal is to be blocked or ignored. A process may also specify that a default action is to be
taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accompanied by
creation of a core image file, containing the current memory image of the process for use in post-mortem
debugging. A process may choose to have signals delivered on a special stack, so that sophisticated soft-
ware stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order in which
they are delivered to a process is implementation specific. Signal routines execute with the signal that
caused their invocation blocked, but other signals may yet occur. Mechanisms are provided whereby criti-
cal sections of code may protect themselves against the occurrence of specified signals.

2.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions, software condi-
tions, input/output notification, process control, or resource control. The set of signals is defined in the file
<signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execution. Such
signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL for illegal
instruction execution, SIGSEGV for addresses outside the currently assigned area of memory, and SIGBUS
for accesses that violate memory protection constraints. Other, more cpu-specific hardware signals exist,
such as those for the various customer-reserved instructions on the VAX (SIGIOT, SIGEMT, and SIG-
TRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt signal;
SIGQUIT for the more powerful quit signal, that normally causes a core image to be generated; SIGHUP
and SIGTERM that cause graceful process termination, either because a user has ‘‘hung up’’, or by user or
program request; and SIGKILL, a more powerful termination signal which a process cannot catch or
ignore. Other software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration of interval
timers.

A process can request notification via a SIGIO signal when input or output is possible on a descrip-
tor, or when a non-blocking operation completes. A process may request to receive a SIGURG signal when
an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The SIGSTOP
signal is a powerful stop signal, because it cannot be caught. Other stop signals SIGTSTP, SIGTTIN, and
SIGTTOU are used when a user request, input request, or output request respectively is the reason the pro-
cess is being stopped. A SIGCONT signal is sent to a process when it is continued from a stopped state.
Processes may receive notification with a SIGCHLD signal when a child process changes state, either by
stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been reached.

2.3.3. Signal handlers

A process has a handler associated with each signal that controls the way the signal is delivered. The
call
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#include <signal.h>

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_onstack;

};

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address sv_handler to signal signo. Each handler address specifies either an inter-
rupt routine for the signal, that the signal is to be ignored, or that a default action (usually process termina-
tion) is to occur if the signal occurs. The constants SIG_IGN and SIG_DEF used as values for sv_handler
cause ignoring or defaulting of a condition. The sv_mask and sv_onstack values specify the signal mask to
be used when the handler is invoked and whether the handler should operate on the normal run-time stack
or a special signal stack (see below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process then it will be delivered. The process of signal
delivery adds the signal to be delivered and those signals specified in the associated signal handler’s
sv_mask to a set of those masked for the process, saves the current process context, and places the process
in the context of the signal handling routine. The call is arranged so that if the signal handling routine exits
normally the signal mask will be restored and the process will resume execution in the original context. If
the process wishes to resume in a different context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents signals from being
delivered much as a raised hardware interrupt priority level prevents hardware interrupts. Preventing an
interrupt from occurring by changing the handler is analogous to disabling a device from further interrupts.

The signal handling routine sv_handler is called by a C call of the form

(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of information supplied by the
hardware. The scp parameter is a pointer to a machine-dependent structure containing the information for
restoring the context before the signal.

2.3.4. Sending signals

A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)
int pgrp, signo;

Unless the process sending the signal is privileged, it and the process receiving the signal must have the
same effective user id.

Signals are also sent implicitly from a terminal device to the process group associated with the termi-
nal when certain input characters are typed.

2.3.5. Protecting critical sections

To block a section of code against one or more signals, a sigblock call may be used to add a set of
signals to the existing mask, returning the old mask:
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oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask ,

oldmask = sigsetmask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty mask .

It is possible to check conditions with some signals blocked, and then to pause waiting for a signal
and restoring the mask, by using:

sigpause(mask);
long mask;

2.3.6. Signal stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

};

sigstack(ss, oss)
struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack indicates
whether the process is currently on the signal stack, a notion maintained in software by the system.

When a signal is to be delivered, the system checks whether the process is on a signal stack. If not,
then the process is switched to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the signal
stack that uses a different stack, a sigstack call should be used to reset the signal stack.
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2.4. Timers

2.4.1. Real time

The system’s notion of the current Greenwich time and the current time zone is set and returned by
the call by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

};

Earlier versions of UNIX contained only a 1-second resolution version of this call, which remains as a
library routine:

time(tvsec)
result long *tvsec;

returning only the tv_sec field from the gettimeofday call.

2.4.2. Interval time

The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to maintain a
wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process is
executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running
on behalf of the process. It is designed to be used by processes to statistically profile their execution. A
SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.



4.2BSD System Manual -12- Timers

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setitimer specifies an optional structure to receive the previous contents of the inter-
val timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This clock
resolution can be determined by loading a very small value into a timer and reading the timer back to see
what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain because it is not
always possible to guarantee the automatic restart of system calls after receipt of a signal.

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;
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2.5. Descriptors

2.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle allowing the
process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level of indirec-
tion, so that descriptors may be shared between processes. Each process has a descriptor reference table,
containing pointers to the actual descriptors. The descriptors themselves thus have multiple references, and
are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the getdtable-
size call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by small inte-
gers; for example if there are 20 slots they are numbered 0 to 19.

2.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by its type. Each
type supports a set of operations; some operations, such as reading and writing, are common to several
abstractions, while others are unique. The generic operations applying to many of these types are described
in section 2.1. Naming contexts, files and directories are described in section 2.2. Section 2.3 describes
communications domains and sockets. Terminals and (structured and unstructured) devices are described
in section 2.4.

2.5.3. Managing descriptor references

A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new chosen by the
system will be the smallest unused descriptor reference slot. A copy of a descriptor reference may be made
in a specific slot by doing

dup2(old, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot new, if any,
replacing it with a reference to the same descriptor as old. This deallocation is also performed by:

close(old);
int old;

2.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing of operations.

Synchronous multiplexing is performed by using the select call:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result *in, *out, *except;
struct timeval *tvp;

The select call examines the descriptors specified by the sets in, out and except, replacing the specified bit
masks by the subsets that select for input, output, and exceptional conditions respectively (nd indicates the
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size, in bytes, of the bit masks). If any descriptors meet the following criteria, then the number of such
descriptors is returned in nds and the bit masks are updated.

2.fam T •
A descriptor selects for input if an input oriented operation such as read or receive is possible, or if a
connection request may be accepted (see section 2.3.1.4).

2.fam T •
A descriptor selects for output if an output oriented operation such as write or send is possible, or if
an operation that was ‘‘in progress’’, such as connection establishment, has completed (see section
2.1.3).

2.fam T •
A descriptor selects for an exceptional condition if a condition that would cause a SIGURG signal to
be generated exists (see section 1.3.2).

If none of the specified conditions is true, the operation blocks for at most the amount of time specified by
tvp, or waits for one of the conditions to arise if tvp is given as 0.

Options affecting i/o on a descriptor may be read and set by the call:

dopt = fcntl(d, cmd, arg)
result int dopt; int d, cmd, arg;

/* interesting values for cmd */
#define F_SETFL 3 /* set descriptor options */
#define F_GETFL 4 /* get descriptor options */
#define F_SETOWN 5 /* set descriptor owner (pid/pgrp) */
#define F_GETOWN 6 /* get descriptor owner (pid/pgrp) */

The F_SETFL cmd may be used to set a descriptor in non-blocking i/o mode and/or enable signalling when
i/o is possible. F_SETOWN may be used to specify a process or process group to be signalled when using
the latter mode of operation.

Operations on non-blocking descriptors will either complete immediately, note an error EWOULD-
BLOCK, partially complete an input or output operation returning a partial count, or return an error EIN-
PROGRESS noting that the requested operation is in progress. A descriptor which has signalling enabled
will cause the specified process and/or process group be signaled, with a SIGIO for input, output, or in-
progress operation complete, or a SIGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only as
much data as there is buffer space for and return; when making a connection on a socket, the operation may
return indicating that the connection establishment is ‘‘in progress’’. The select facility can be used to
determine when further output is possible on the terminal, or when the connection establishment attempt is
complete.

2.5.5. Descriptor wrapping.†

A user process may build descriptors of a specified type by wrapping a communications channel with
a system supplied protocol translator:

new = wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol translator into requests
on the underyling object old in a way defined by the protocol. The protocols supported by the kernel may
vary from system to system and are described in the programmers manual.

Protocols may be based on communications multiplexing or a rights-passing style of handling multi-
ple requests made on the same object. For instance, a protocol for implementing a file abstraction may or
may not include locally generated ‘‘read-ahead’’ requests. A protocol that provides for read-ahead may

† The facilities described in this section are not included in 4.2BSD.
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provide higher performance but have a more difficult implementation.

Another example is the terminal driving facilities. Normally a terminal is associated with a commu-
nications line and the terminal type and standard terminal access protocol is wrapped around a synchronous
communications line and given to the user. If a virtual terminal is required, the terminal driver can be
wrapped around a communications link, the other end of which is held by a virtual terminal protocol inter-
preter.
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2.6. Resource controls

2.6.1. Process priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently. This
tends to favor interactive processes and processes that execute only for short periods. It is possible to deter-
mine the priority currently assigned to a process, process group, or the processes of a specified user, or to
alter this priority using the calls:

#define PRIO_PROCESS 0 /* process */
#define PRIO_PGRP 1 /* process group */
#define PRIO_USER 2 /* user id */

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

The value prio is in the range −20 to 20. The default priority is 0; lower priorities cause more favorable
execution. The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to the specified
value. Only the super-user may lower priorities.

2.6.2. Resource utilization

The resources used by a process are returned by a getrusage call, returning information in a structure
defined in <sys/resource.h>:

#define RUSAGE_SELF 0 /* usage by this process */
#define RUSAGE_CHILDREN -1 /* usage by all children */

getrusage(who, rusage)
int who; result struct rusage *rusage;

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
int ru_maxrss; /* maximum core resident set size: kbytes */
int ru_ixrss; /* integral shared memory size (kbytes*sec) */
int ru_idrss; /* unshared data " */
int ru_isrss; /* unshared stack " */
int ru_minflt; /* page-reclaims */
int ru_majflt; /* page faults */
int ru_nswap; /* swaps */
int ru_inblock; /* block input operations */
int ru_oublock; /* block output " */
int ru_msgsnd; /* messages sent */
int ru_msgrcv; /* messages received */
int ru_nsignals; /* signals received */
int ru_nvcsw; /* voluntary context switches */
int ru_nivcsw; /* involuntary " */

};

The who parameter specifies whose resource usage is to be returned. The resources used by the current
process, or by all the terminated children of the current process may be requested.
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2.6.3. Resource limits

The resources of a process for which limits are controlled by the kernel are defined in
<sys/resource.h>, and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU 0 /* cpu time in milliseconds */
#define RLIMIT_FSIZE 1 /* maximum file size */
#define RLIMIT_DAT A 2 /* maximum data segment size */
#define RLIMIT_STACK 3 /* maximum stack segment size */
#define RLIMIT_CORE 4 /* maximum core file size */
#define RLIMIT_RSS 5 /* maximum resident set size */

#define RLIM_NLIMITS 6

#define RLIM_INFINITY 0x7fffffff

struct rlimit {
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */

};

getrlimit(resource, rlp)
int resource; result struct rlimit *rlp;

setrlimit(resource, rlp)
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within the
range from 0 to rlim_max or (irreversibly) lower rlim_max.
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2.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

2.7.1. Bootstrap operations

The call

mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX file sys-
tem to be made available starting at dir. If ronly is set then the file system is read-only; writes to the file
system will not be permitted and access times will not be updated when files are referenced. Dir is nor-
mally a name in the root directory.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

2.7.2. Shutdown operations

The call

unmount(dir);
char *dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not currently
being used.

The call

sync();

schedules input/output to clean all system buffer caches. (This call does not require priveleged status.)

The call

reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as RB_AUTOBOOT, or
that the machine be halted with RB_HALT. These constants are defined in <sys/reboot.h>.

2.7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on the system.
The format of this record is beyond the scope of this document. The accounting may be enabled to a file
name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file.
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3. System facilities

This section discusses the system facilities that are not considered part of the kernel.

The system abstractions described are:

1.fam T Directory contexts
A directory context is a position in the UNIX file system name space. Operations on files and other
named objects in a file system are always specified relative to such a context.

1.fam T Files
Files are used to store uninterpreted sequence of bytes on which random access reads and writes may
occur. Pages from files may also be mapped into process address space. A directory may be read as
a file†.

1.fam T Communications domains
A communications domain represents an interprocess communications environment, such as the
communications facilities of the UNIX system, communications in the INTERNET, or the resource
sharing protocols and access rights of a resource sharing system on a local network.

1.fam T Sockets
A socket is an endpoint of communication and the focal point for IPC in a communications domain.
Sockets may be created in pairs, or given names and used to rendezvous with other sockets in a com-
munications domain, accepting connections from these sockets or exchanging messages with them.
These operations model a labeled or unlabeled communications graph, and can be used in a wide
variety of communications domains. Sockets can have different types to provide different semantics
of communication, increasing the flexibility of the model.

1.fam T Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output flow control
and editing, magnetic tapes, disks and other peripherals. They often support the generic read and
write operations as well as a number of ioctl s.

1.fam T Processes
Process descriptors provide facilities for control and debugging of other processes.

† Support for mapping files is not included in the 4.2 release.
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3.1. Generic operations

Many system abstractions support the operations read, write and ioctl. We describe the basics of
these common primitives here. Similarly, the mechanisms whereby normally synchronous operations may
occur in a non-blocking or asynchronous fashion are common to all system-defined abstractions and are
described here.

3.1.1. Read and write

The read and write system calls can be applied to communications channels, files, terminals and
devices. They hav e the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at address buf of
size nbytes. The number of bytes transferred is returned in cc, which is −1 if a return occurred before any
data was transferred because of an error or use of non-blocking operations.

The write call transfers data from the buffer to the object defined by fd. Depending on the type of fd,
it is possible that the write call will accept some portion of the provided bytes; the user should resubmit the
other bytes in a later request in this case. Error returns because of interrupted or otherwise incomplete
operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of input/out-
put vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
caddr_t iov_msg; /* base of a component */
int iov_len; /* length of a component */

};

The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

3.1.2. Input/output control

Control operations on an object are performed by the ioctl operation:

ioctl(fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request parameter speci-
fies whether the argument buffer is to be read, written, read and written, or is not needed, and also the size
of the buffer, as well as the request. Different descriptor types and subtypes within descriptor types may
use distinct ioctl requests. For example, operations on terminals control flushing of input and output queues
and setting of terminal parameters; operations on disks cause formatting operations to occur; operations on
tapes control tape positioning.

The names for basic control operations are defined in <sys/ioctl.h>.
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3.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor in
non-blocking mode as described in section 1.5.4. Thereafter the read call will return a specific EWOULD-
BLOCK error indication if there is no data to be read. The process may dselect the associated descriptor to
determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of the
provided data, returning a shorter than normal length, or return an error indicating that the operation would
block. More output can be performed as soon as a select call indicates the object is writeable.

Operations other than data input or output may be performed on a descriptor in a non-blocking fash-
ion. These operations will return with a characteristic error indicating that they are in progress if they can-
not return immediately. The descriptor may then be selected for write to find out when the operation can be
retried. When select indicates the descriptor is writeable, a respecification of the original operation will
return the result of the operation.
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3.2. File system

3.2.1. Overview

The file system abstraction provides access to a hierarchical file system structure. The file system
contains directories (each of which may contain other sub-directories) as well as files and references to
other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related information
is present in a file. Files may be read and written in a random-access fashion. The user may read the data
in a directory as though it were an ordinary file to determine the names of the contained files, but only the
system may write into the directories. The file system stores only a small amount of ownership, protection
and usage information with a file.

3.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more component file
names separated by ‘‘/’’ characters, where each file name is up to 255 ASCII characters excluding null and
‘‘/’’.

Each process always has two naming contexts: one for the root directory of the file system and one
for the current working directory. These are used by the system in the filename translation process. If a
path name begins with a ‘‘/’’, it is called a full path name and interpreted relative to the root directory con-
text. If the path name does not begin with a ‘‘/’’ it is called a relative path name and interpreted relative to
the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name ‘‘..’’ in each directory refers to the parent directory of that directory. The parent direc-
tory of a file system is always the systems root directory.

The calls

chdir(path);
char *path;

chroot(path)
char *path;

change the current working directory and root directory context of a process. Only the super-user can
change the root directory context of a process.

3.2.3. Creation and removal

The file system allows directories, files, special devices, and ‘‘portals’’ to be created and removed
from the file system.

3.2.3.1. Directory creation and removal

A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; int mode;

and removed with the rmdir system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.
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3.2.3.2. File creation

Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be created. The oflag parameter must include
O_CREAT from below to cause the file to be created. The protection for the new file is specified in mode.
Bits for oflag are defined in <sys/file.h>:

#define O_RDONLY 000 /* open for reading */
#define O_WRONLY 001 /* open for writing */
#define O_RDWR 002 /* open for read & write */
#define O_NDELAY 004 /* non-blocking open */
#define O_APPEND 010 /* append on each write */
#define O_CREAT 01000 /* open with file create */
#define O_TRUNC 02000 /* open with truncation */
#define O_EXCL 04000 /* error on create if file exists */

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of oper-
ations are desired to be performed on the open file. The operations will be checked against the user’s
access rights to the file before allowing the open to succeed. Specifying O_APPEND causes writes to auto-
matically append to the file. The flag O_CREAT causes the file to be created if it does not exist, with the
specified mode, owned by the current user and the group of the containing directory.

If the open specifies to create the file with O_EXCL and the file already exists, then the open will fail
without affecting the file in any way. This provides a simple exclusive access facility.

3.2.3.3. Creating references to devices

The file system allows entries which reference peripheral devices. Peripherals are distinguished as
block or character devices according by their ability to support block-oriented operations. Devices are
identified by their ‘‘major’’ and ‘‘minor’’ device numbers. The major device number determines the kind of
peripheral it is, while the minor device number indicates one of possibly many peripherals of that kind.
Structured devices have all operations performed internally in ‘‘block’’ quantities while unstructured
devices often have a number of special ioctl operations, and may have input and output performed in large
units. The mknod call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

where mode is formed from the object type and access permissions. The parameter dev is a configuration
dependent parameter used to identify specific character or block i/o devices.

3.2.3.4. Portal creation†

The call

fd = portal(name, server, param, dtype, protocol, domain, socktype)
result int fd; char *name, *server, *param; int dtype, protocol;
int domain, socktype;

places a name in the file system name space that causes connection to a server process when the name is
used. The portal call returns an active portal in fd as though an access had occurred to activate an inactive
portal, as now described.

When an inactive portal is accesseed, the system sets up a socket of the specified socktype in the
specified communications domain (see section 2.3), and creates the server process, giving it the specified
param as argument to help it identify the portal, and also giving it the newly created socket as descriptor

† The portal call is not implemented in 4.2BSD.
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number 0. The accessor of the portal will create a socket in the same domain and connect to the server.
The user will then wrap the socket in the specified protocol to create an object of the required descriptor
type dtype and proceed with the operation which was in progress before the portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on descriptor 0
at activation) further references will result in connections being made to the same socket.

3.2.3.5. File, device, and portal removal

A reference to a file, special device or portal may be removed with the unlink call,

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for this call to be successful.

3.2.4. Reading and modifying file attributes

Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stat.h>

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of hard links.
If the file is a symbolic link, then the status of the link itself (rather than the file the link references) may be
found using the lstat call:

lstat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group id of the direc-
tory in which it was created. The ownership of a file may be changed by either of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it. These lev-
els are owner relative, group relative, and global (all users and groups). Each level of access has separate
indicators for read permission, write permission, and execute permission. The protection bits associated
with a file may be set by either of the calls:

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

where mode is a value indicating the new protection of the file. The file mode is a three digit octal number.
Each digit encodes read access as 4, write access as 2 and execute access as 1, or’ed together. The 0700
bits describe owner access, the 070 bits describe the access rights for processes in the same group as the
file, and the 07 bits describe the access rights for other processes.

Finally, the access and modify times on a file may be set by the call:
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utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve relationships between the times
the file was modified.

3.2.5. Links and renaming

Links allow multiple names for a file to exist. Links exist independently of the file linked to.

Tw o types of links exist, hard links and symbolic links. A hard link is a reference counting mecha-
nism that allows a file to have multiple names within the same file system. Symbolic links cause string sub-
stitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists for a sym-
bolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to path1:

link(path1, path2);
char *path1, *path2;

symlink(path1, path2);
char *path1, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the ‘‘value’’ of the link may be read with the readlink call,

len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;

This call returns, in buf, the null-terminated string substituted into pathnames passing through path .

Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is a directory,
then it must be empty.

3.2.6. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending to them.
While a file is open the system maintains a pointer into the file indicating the current location in the file
associated with the descriptor. This pointer may be moved about in the file in a random access fashion. To
set the current offset into a file, the lseek call may be used,

oldoffset = lseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of,

#define L_SET 0 /* set absolute file offset */
#define L_INCR 1 /* set file offset relative to current position */
#define L_XTND 2 /* set offset relative to end-of-file */

The call ‘‘lseek(fd, 0, L_INCR)’’ returns the current offset into the file.

Files may have ‘‘holes’’ in them. Holes are void areas in the linear extent of the file where data has
never been written. These may be created by seeking to a location in a file past the current end-of-file and
writing. Holes are treated by the system as zero valued bytes.
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A file may be truncated with either of the calls:

truncate(path, length);
char *path; int length;

ftruncate(fd, length);
int fd, length;

reducing the size of the specified file to length bytes.

3.2.7. Checking accessibility

A process running with different real and effective user ids may interrogate the accessibility of a file
to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or’ing the following bits, defined in <sys/file.h>:

#define F_OK 0 /* file exists */
#define X_OK 1 /* file is executable */
#define W_OK 2 /* file is writable */
#define R_OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of access .

3.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their access
to shared files. A process may place an advisory read or write lock on a file, so that other cooperating pro-
cesses may avoid interfering with the process’ access. This simple mechanism provides locking with file
granularity. More granular locking can be built using the IPC facilities to provide a lock manager. The sys-
tem does not force processes to obey the locks; they are of an advisory nature only.

Locking is performed after an open call by applying the flock primitive,

flock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in <sys/file.h>:

#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 4 /* don’t block when locking */
#define LOCK_UN 8 /* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If an object is currently
locked by another process when a flock call is made, the caller will be blocked until the current lock owner
releases the lock; this may be avoided by including LOCK_NB in the how parameter. Specifying
LOCK_UN removes all locks associated with the descriptor. Advisory locks held by a process are auto-
matically deleted when the process terminates.

3.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user’s disk usage.
Tw o quantities are limited: the total amount of disk space which a user may allocate in a file system and the
total number of files a user may create in a file system. Quotas are expressed as hard limits and soft limits.
A hard limit is always imposed; if a user would exceed a hard limit, the operation which caused the
resource request will fail. A soft limit results in the user receiving a warning message, but with allocation
succeeding. Facilities are provided to turn soft limits into hard limits if a user has exceeded a soft limit for
an unreasonable period of time.
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To enable disk quotas on a file system the setquota call is used:

setquota(special, file)
char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file refers to a disk
quota file (residing on the file system associated with special) from which user quotas should be obtained.
The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:

#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command specific. The
file <sys/quota.h> contains definitions pertinent to the use of this call.
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3.3. Interprocess communications

3.3.1. Interprocess communication primitives

3.3.1.1. Communication domains

The system provides access to an extensible set of communication domains. A communication
domain is identified by a manifest constant defined in the file <sys/socket.h>. Important standard domains
supported by the system are the ‘‘unix’’ domain, AF_UNIX, for communication within the system, and the
‘‘internet’’ domain for communication in the DARPA internet, AF_INET. Other domains can be added to
the system.

3.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known as sockets.
Each socket has the potential to exchange information with other sockets within the domain.

Each socket has an associated abstract type, which describes the semantics of communication using
that socket. Properties such as reliability, ordering, and prevention of duplication of messages are deter-
mined by the type. The basic set of socket types is defined in <sys/socket.h>:

/* Standard socket types */
#define SOCK_DGRAM 1 /* datagram */
#define SOCK_STREAM 2 /* virtual circuit */
#define SOCK_RAW 3 /* raw socket */
#define SOCK_RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packets */

The SOCK_DGRAM type models the semantics of datagrams in network communication: messages may
be lost or duplicated and may arrive out-of-order. The SOCK_RDM type models the semantics of reliable
datagrams: messages arrive unduplicated and in-order, the sender is notified if messages are lost. The send
and receive operations (described below) generate reliable/unreliable datagrams. The SOCK_STREAM
type models connection-based virtual circuits: two-way byte streams with no record boundaries. The
SOCK_SEQPACKET type models a connection-based, full-duplex, reliable, sequenced packet exchange;
the sender is notified if messages are lost, and messages are never duplicated or presented out-of-order.
Users of the last two abstractions may use the facilities for out-of-band transmission to send out-of-band
data.

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it has no spe-
cific semantics.

Other socket types can be defined.†

Each socket may have a concrete protocol associated with it. This protocol is used within the domain
to provide the semantics required by the socket type. For example, within the ‘‘internet’’ domain, the
SOCK_DGRAM type may be implemented by the UDP user datagram protocol, and the SOCK_STREAM
type may be implemented by the TCP transmission control protocol, while no standard protocols to provide
SOCK_RDM or SOCK_SEQPACKET sockets exist.

3.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the
socket call:

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

An unconnected socket descriptor may yield a connected socket descriptor in one of two ways: either
by actively connecting to another socket, or by becoming associated with a name in the communications

† 4.2BSD does not support the SOCK_RDM and SOCK_SEQPACKET types.
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domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the communications
domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket’s bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result caddr_t name; result int *namelen;

while the peer’s name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

3.3.1.4. Accepting connections

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued awaiting
acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result caddr_t name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s.

3.3.1.5. Making connections

An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; caddr_t name; int namelen;

It is also possible to create connected pairs of sockets without using the domain’s name space to ren-
dezvous; this is done with the socketpair call†:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and connect.

The call

pipe(pv)
result int pv[2];

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv[0] only writeable and pv[1] only
readable.

3.3.1.6. Sending and receiving data

Messages may be sent from a socket by:

† 4.2BSD supports socketpair creation only in the ‘‘unix’’ communication domain.
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cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int s; caddr_t buf; int len, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc; int s; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or source of the message,
while the from parameter stores the source of the message, and *fromlenaddr initially gives the size of the
from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length len bytes,
starting at address buf. The flags specify peeking at a message without reading it or sending or receiving
high-priority out-of-band messages, as follows:

#define MSG_PEEK 0x1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

3.3.1.7. Scatter/gather and exchanging access rights

It is possible scatter and gather data and to exchange access rights with messages. When either of
these operations is involved, the number of parameters to the call becomes large. Thus the system defines a
message header structure, in <sys/socket.h>, which can be used to conveniently contain the parameters to
the calls:

struct msghdr {
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iov *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen; /* size of msg_accrights */

};

Here msg_name and msg_namelen specify the source or destination address if the socket is unconnected;
msg_name may be given as a null pointer if no names are desired or required. The msg_iov and msg_iovlen
describe the scatter/gather locations, as described in section 2.1.3. Access rights to be sent along with the
message are specified in msg_accrights, which has length msg_accrightslen. In the ‘‘unix’’ domain these
are an array of integer descriptors, taken from the sending process and duplicated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;
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3.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and translated into send
and receive calls from or to a single area of memory and discarding any rights received. A process may
operate on a virtual circuit socket, a terminal or a file with blocking or non-blocking input/output operations
without distinguishing the descriptor type.

3.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read from or
write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the connection down.

3.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These options may be
used to manipulate implementation specific or non-standard facilities. The getsockopt and setsockopt calls
are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddr_t optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is specified with
optval and optlen, it is interpreted by the software operating at the specified level. The level
SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other level values indi-
cate a particular protocol which is to act on the option request; these values are normally interpreted as a
‘‘protocol number’’.

3.3.2. UNIX domain

This section describes briefly the properties of the UNIX communications domain.

3.3.2.1. Types of sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while
SOCK_DGRAM provides (usually) reliable message-style communications.

3.3.2.2. Naming

Socket names are strings and may appear in the UNIX file system name space through portals†.

3.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of service
within the system and allows user processes to be used in building system facilities.

3.3.3. INTERNET domain

This section describes briefly how the INTERNET domain is mapped to the model described in this
section. More information will be found in the document describing the network implementation in
4.2BSD.

† The 4.2BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name
space; this is a side effect of the implementation.
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3.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the INTERNET TCP protocol; SOCK_DGRAM by the UDP pro-
tocol. The SOCK_SEQPACKET has no direct INTERNET family analogue; a protocol based on one from
the XEROX NS family and layered on top of IP could be implemented to fill this gap.

3.3.3.2. Socket naming

Sockets in the INTERNET domain have names composed of the 32 bit internet address, and a 16 bit
port number. Options may be used to provide source routing for the address, security options, or additional
address for subnets of INTERNET for which the basic 32 bit addresses are insufficient.

3.3.3.3. Access rights transmission

No access rights transmission facilities are provided in the INTERNET domain.

3.3.3.4. Raw access

The INTERNET domain allows the super-user access to the raw facilities of the various network
interfaces and the various internal layers of the protocol implementation. This allows administrative and
debugging functions to occur. These interfaces are modeled as SOCK_RAW sockets.
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3.4. Terminals and Devices

3.4.1. Terminals

Terminals support read and write i/o operations, as well as a collection of terminal specific ioctl oper-
ations, to control input character editing, and output delays.

3.4.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such as baud rate
and required delays, and a set of software parameters.

3.4.1.1.1. Input modes

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is passed
through to the reading process immediately and without interpretation. In cbreak mode, the handler inter-
prets input only by looking for characters that cause interrupts or output flow control; all other characters
are made available as in raw mode. In cooked mode, input is processed to provide standard line-oriented
local editing functions, and input is presented on a line-by-line basis.

3.4.1.1.2. Interrupt characters

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked modes, and
cause a software interrupt to be sent to all processes in the process group associated with the terminal.
Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a process group with the SIGT-
STP signal either immediately, or when all input up to the stop character has been read.

3.4.1.1.3. Line editing

When the terminal is in cooked mode, editing of an input line is performed. Editing facilities allow
deletion of the previous character or word, or deletion of the current input line. In addition, a special char-
acter may be used to reprint the current input line after some number of editing operations have been
applied.

Certain other characters are interpreted specially when a process is in cooked mode. The end of line
character determines the end of an input record. The end of file character simulates an end of file occur-
rence on terminal input. Flow control is provided by stop output and start output control characters. Out-
put may be flushed with the flush output character; and a literal character may be used to force literal input
of the immediately following character in the input line.

3.4.1.2. Terminal output

On output, the terminal handler provides some simple formatting services. These include converting
the carriage return character to the two character return-linefeed sequence, displaying non-graphic ASCII
characters as ‘‘ˆcharacter’’, inserting delays after certain standard control characters, expanding tabs, and
providing translations for upper-case only terminals.

3.4.1.3. Terminal control operations

When a terminal is first opened it is initialized to a standard state and configured with a set of stan-
dard control, editing, and interrupt characters. A process may alter this configuration with certain control
operations, specifying parameters in a standard structure:

struct ttymode {
short tt_ispeed; /* input speed */
int tt_iflags; /* input flags */
short tt_ospeed; /* output speed */
int tt_oflags; /* output flags */

};
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and ‘‘special characters’’ are specified with the ttychars structure,

struct ttychars {
char tc_erasec; /* erase char */
char tc_killc; /* erase line */
char tc_intrc; /* interrupt */
char tc_quitc; /* quit */
char tc_startc; /* start output */
char tc_stopc; /* stop output */
char tc_eofc; /* end-of-file */
char tc_brkc; /* input delimiter (like nl) */
char tc_suspc; /* stop process signal */
char tc_dsuspc; /* delayed stop process signal */
char tc_rprntc; /* reprint line */
char tc_flushc; /* flush output (toggles) */
char tc_werasc; /* word erase */
char tc_lnextc; /* literal next character */

};

3.4.1.4. Terminal hardware support

The terminal handler allows a user to access basic hardware related functions; e.g. line speed, modem
control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes in a terminal’s
process group when a carrier transition is detected. This is normally associated with a user hanging up on a
modem controlled terminal line.

3.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any random-access
device. The system performs read-modify-write type buffering actions on block devices to allow them to
be read and written in a totally random access fashion like ordinary files. File systems are normally created
in block devices.

3.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar unstructured
devices are raw communications lines (with no terminal handler), raster plotters, magnetic tape and disks
unfettered by buffering and permitting large block input/output and positioning and formatting commands.
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3.5. Process and kernel descriptors

The status of the facilities in this section is still under discussion. The ptrace facility of 4.1BSD is
provided in 4.2BSD. Planned enhancements would allow a descriptor based process control facility.
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I. Summary of facilities

1. Kernel primitives

1.1. Process naming and protection

sethostid set UNIX host id
gethostid get UNIX host id
sethostname set UNIX host name
gethostname get UNIX host name
getpid get process id
fork create new process
exit terminate a process
execve execute a different process
getuid get user id
geteuid get effective user id
setreuid set real and effective user id’s
getgid get accounting group id
getegid get effective accounting group id
getgroups get access group set
setregid set real and effective group id’s
setgroups set access group set
getpgrp get process group
setpgrp set process group

1.2 Memory management

<mman.h> memory management definitions
sbrk change data section size
sstk† change stack section size
getpagesize get memory page sizemmap† map pages of memory
mremap† remap pages in memory
munmap† unmap memory
mprotect† change protection of pages
madvise† give memory management advice
mincore† determine core residency of pages

1.3 Signals

<signal.h> signal definitions
sigvec set handler for signal
kill send signal to process
killpgrp send signal to process group
sigblock block set of signals
sigsetmask restore set of blocked signals
sigpause wait for signals
sigstack set software stack for signals

1.4 Timing and statistics

<sys/time.h> time-related definitions
gettimeofday get current time and timezone
settimeofday set current time and timezone
getitimer read an interval timer
setitimer get and set an interval timer
profil profile process

1.5 Descriptors
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getdtablesize descriptor reference table size
dup duplicate descriptor
dup2 duplicate to specified index
close close descriptor
select multiplex input/output
fcntl control descriptor options
wrap† wrap descriptor with protocol

1.6 Resource controls

<sys/resource.h> resource-related definitions
getpriority get process priority
setpriority set process priority
getrusage get resource usage
getrlimit get resource limitations
setrlimit set resource limitations

1.7 System operation support

mount mount a device file system
swapon add a swap device
umount umount a file system
sync flush system caches
reboot reboot a machine
acct specify accounting file

2. System facilities

2.1 Generic operations

read read data
write write data
<sys/uio.h> scatter-gather related definitions
readv scattered data input
writev gathered data output
<sys/ioctl.h> standard control operations
ioctl device control operation

2.2 File system

Operations marked with a * exist in two forms: as shown, operating on a file name, and operating on
a file descriptor, when the name is preceded with a ‘‘f ’’.

<sys/file.h> file system definitions
chdir change directory
chroot change root directory
mkdir make a directory
rmdir remove a directory
open open a new or existing file
mknod make a special file
portal† make a portal entry
unlink remove a link
stat* return status for a file
lstat returned status of link
chown* change owner
chmod* change mode
utimes change access/modify times

† Not supported in 4.2BSD.
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link make a hard link
symlink make a symbolic link
readlink read contents of symbolic link
rename change name of file
lseek reposition within file
truncate* truncate file
access determine accessibility
flock lock a file

2.3 Communications

<sys/socket.h> standard definitions
socket create socket
bind bind socket to name
getsockname get socket name
listen allow queueing of connections
accept accept a connection
connect connect to peer socket
socketpair create pair of connected sockets
sendto send data to named socket
send send data to connected socket
recvfrom receive data on unconnected socket
recv receive data on connected socket
sendmsg send gathered data and/or rights
recvmsg receive scattered data and/or rights
shutdown partially close full-duplex connection
getsockopt get socket option
setsockopt set socket option

2.5 Terminals, block and character devices

2.4 Processes and kernel hooks
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