
Design and Implementation of the
Berkeley Virtual Memory Extensions to the

UNIX† Operating System‡

Özalp Babaog̃lu

William Joy

Juan Porcar

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This paper describes a modified version of the UNIX operating system that supports
virtual memory through demand paging. The particular implementation being described
here is specific to the VAX*-11/780 computer system although most of the design decisions
have wider applicability.

The modified system creates a large virtual address space for user programs while
supporting the same user level interface as UNIX. The few new system calls that have
been introduced are primarily aimed for performance enhancement. The paging system
implements a variant of the global CLOCK replacement policy (an approximation of the
global least recently used algorithm) with a working-set-like mechanism for the control
of multiprogramming level.

Measurement results indicate that the lack of reference bits in the VAX memory-
management hardware can be overcome at relatively little expense through software
detection. Also included are measurement results comparing the virtual system perfor-
mance to the swap-based system performance under a script-driven load.

Ke ywords and phrases: UNIX, virtual memory, paging, swapping, operating systems, per-
formance evaluation, VAX.

18 May 2004

† UNIX and UNIX/32V are Trademarks of Bell Laboratories

‡ Work supported by the National Science Foundation under grants MCS 7807291, MCS 7824618, MCS
7407644-A03 and by an IBM Graduate Fellowship to the second author.

* VAX and PDP are trademarks of Digital Equipment Corporation.



Design and Implementation of the
Berkeley Virtual Memory Extensions to the

UNIX† Operating System‡

Özalp Babaog̃lu

William Joy

Juan Porcar

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

1. Introduction

The most significant architectural enhancement that the VAX-11/780 provides over its predecessor, the
PDP*-11, is the very large address space made available to user programs. The fundamental task of trans-
porting UNIX to this new hardware was accomplished by Bell Laboratories at Holmdel. In addition to the
portability directed changes, the memory-management mechanism of the base system was modified to
make partial use of the new hardware. In particular, through these changes, processes could be scatter
loaded into memory thus avoiding main-memory fragmentation, and swapped in and out of memory par-
tially. A process, however, still had to be fully loaded in order to execute. While no longer limited by the
16 bit address space of the PDP-11, the per-process address space could grow only as large as the physical
memory available to user processes. This system, which constituted a prerelease of UNIX/32V†, was
adopted as the basis for virtual memory extensions.

The virtual memory effort was motivated by several factors in our research environment:

* To provide a very large virtual address space for user processes, in particular, Lisp systems such as
MACSYMA, and other systems employed in Image Processing and VLSI design research.

* To provide an easily accessible virtual memory environment suitable for research in the fields of stor-
age hierarchy performance evaluation and automatic program restructuring.

* To try to improve overall system performance by making better use of our very limited memory
resource.

The reader should be familiar with the standard UNIX system as described in [RITC 74] and the vir-
tual memory concept in general [DENN 70]. In the next section, we briefly describe the memory-manage-
ment hardware as it exists in the VAX-11/780 to support virtual memory [DEC 78]. The following sections
detail the new kernel operations including new system calls followed by various measurement results.

2. VAX-11/780 Memory-Management Hardware

The VAX-11/780 memory-management hardware supports a two lev el mapping mechanism to perform
the address translation task. The first level page tables reside in system virtual address space and map user
page tables. These tables in turn, map the user virtual address space which consists of 512 byte pages. The
32 bit virtual address space of the VAX-11/780 is divided into four equal sized blocks.

† UNIX and UNIX/32V are Trademarks of Bell Laboratories

‡ Work supported by the National Science Foundation under grants MCS 7807291, MCS 7824618, MCS
7407644-A03 and by an IBM Graduate Fellowship to the second author.

* VAX and PDP are trademarks of Digital Equipment Corporation.



-2-

0
P0 Region

↓

2 30 - 1

↑

P1 Region

2 31 - 1

System Region

↓

Reserved Region

2 32 - 1

Fig. 2.1. Virtual address space
Tw o of these blocks, known as the P0 and P1 regions, constitute the two per-process segments. The third
block, known as the system region, contains the shared kernel virtual address space while the fourth region
is not supported by the current hardware. The P0 segment starts at virtual address 0 and can grow tow ard
higher addresses. The P1 segment on the other hand, starts at the top of user virtual address space and
grows toward lower addresses. Both segments are described by two per-process (base, length) register
pairs.

A page table entry consists of four bytes of mapping and protection information. Attempting a trans-
lation through a page table entry that has the valid bit off results in a Tr anslation Not Valid Fault (i.e., a
page fault). Whereas most architectures that support virtual memory provide a per-page Reference Bit that
is automatically set by the hardware when the corresponding page is referenced to be examined and/or reset
by the page replacement algorithm, the VAX-11/780 has no such mechanism. In order to overcome this defi-
ciency, we distinguish the three states that a page of virtual address space can be in:

[1] Valid − the page is in memory and valid. This corresponds to the valid, referenced state in the pres-
ence of a reference bit.

[2] Not valid but in memory − the page is in memory but the page table entry is marked not valid so as to
cause a page fault upon reference. This is the so called reclaimable state of the page. Equivalent to
the valid, not referenced state.

[3] Not valid and not in memory − the page is in secondary storage. Equivalent to the not valid state.

This scheme in effect allows us to detect and record references to pages using software. We discuss
the cost and effectiveness of the method in §7.2.

3. Process Structure

In UNIX, the notion of a process and a computer execution environment are intimately related
[THOM 78]. In fact, a process is the execution of this environment which consists of the process virtual
address space state, general register contents, open files, current directory, etc. The state of this pseudo
computer is comprised of the contents of four segments. The first three contain the process virtual address
space, while the fourth segment describes the system maintained state information.

The process virtual address space consists of a read only program text segment that is shared amongst
all processes that are currently executing the same program, as well as private writable data and stack seg-
ments. Within the limited segmentation capability of the VAX-11/780, these three segments are mapped such
that the program text is in the P0 region beginning at virtual address 0 with the data immediately after it
starting at the next page boundary. The stack segment is mapped into the P1 region starting at the highest



-3-

virtual address. While the text segment has a static size, the data segment can be grown or shrunk through
system calls and the stack segment is grown automatically by the kernel upon the detection of segmentation
faults.

The physical structure of these segments in secondary storage (called an image) can be organized in
various ways. At one extreme is the physically contiguous organization described simply by a (base,
length) pair. While appropriate for static segments, such as text, this organization is too rigid for dynami-
cally growing segments, like the data and stack segments. In addition to fragmentation, segment growth
beyond the current allocation could imply physical movement of the image. At the other extreme is a fully
scattered organization of the image. While minimizing fragmentation, this can result in expensive alloca-
tion and mapping functions due to the large number of pages which are present in large images.

The image organization chosen for the dynamic segments represents a compromise between the two
extremes. Each image consists of several scattered chunks. An exponentially increasing chunk allocation
scheme allows the mapping of very large segments through a small table. Limiting the maximum size of
any chunk helps to prevent extreme fragmentation. Thus in the current system, the smallest chunk allo-
cated to a segment is 8K bytes, and chunk sizes increase by powers of two up to a maximum size of 2M
bytes.

4. Kernel Functions

We now describe the major new functions performed by the kernel as well as the existing functions
whose implementation have been significantly modified. For the purposes of future discussion, we define
the following terms:

Free List The doubly linked circular queue of page frames available for allocation. Allocation is
always from the head, while insertion occurs both at the head (for pages which can no
longer be needed) or the tail (for pages which might still be reclaimed).

Loop Envision the set of physical page frames that are not in the free list as if they were
arranged statically around the circumference of a circle. We refer to these set of page
frames, ordered by physical address, as the loop. Page frames allocated to kernel code
and data appear in neither the loop nor the free list.

Hand A pointer to a page frame that is in the loop. The hand is incremented circularly around
the loop by the pageout daemon as described below.

4.1. Page Fault Handling

The most visible of the kernel changes is the existence of a Tr anslation Not Valid fault handler.
Given the virtual address that caused the fault, the system checks to see if the page containing the virtual
address is in the reclaimable state. This happens when the pageout daemon has swept past a page and
made it reclaimable to simulate a reference bit (as described below). If the page is in this state, it can once
again be made valid, and the process returns to user mode. Note that if the reclaimed page was in the free
list, it is removed and reenters the loop. Since none of the operations involved in reclaiming a page can
cause the process to block, reclaiming a page does not involve a processor context switch and reschedule.

If the page cannot be reclaimed (i.e., is not no longer in core), then a page frame is allocated and the
disk transfer is initiated from the segment image as dictated by the image mapping.

In reality, more cases must be considered. If the faulting page belongs to a shared text segment, the
disk transfer is initiated only if the page is not reclaimable and not intransit, i.e., the pagein operation has
not already been initiated by another process that is sharing the text segment. If intransit, the faulting pro-
cess sleeps to be waken by the process that started the page transfer when it completes. Here we note that
the first level page tables for shared text segments are not shared, but rather, each process has its own
copy.† Thus, all operations that modify page table entries of shared text segments must insure that all

† Sharing all user level page tables of shared segments would require a 64K byte alignment between the text and
data segments. This is not enforced by the current loading scheme, so currently these page tables are not shared
at all.



-4-

existing copies are updated.

Other types of page faults that require special handling are those where the faulting page is marked as
fill on demand. There are three types of demand fill pages:

Zero Fill These pages are created due to segment growth and result in a page of zeroes when refer-
enced.

Text Fill These pages result from execution of demand-loaded programs, and cause the corre-
sponding page to be loaded at the point of first reference, from the currently executing
object file. Such object files are created by a special directive to the loader and are
described further in §5.3.

File Fill These pages are similar to text fill pages, but the pages come from a open file rather than
the current text image file. These pages are set up by the vread system call. See section
§5.2 for more details.

4.2. Page Write Back

During system initialization, just before the init process is created, the bootstrapping code creates
process 2 which is known as the pageout daemon. It is this process that actually implements the page
replacement policy as well as writing back modified pages. The process leaves its normal dormant state
upon being waken up due to the memory free list size dropping below an upper threshold.

At this point, the daemon examines the page frame being pointed to by the hand. If the page frame
corresponds to a valid page, it is made reclaimable. Otherwise the page was reclaimable, and it is freed, but
remains reclaimable until it is removed from the free list and allocated to another purpose. The hand is then
incremented and the above steps are repeated until either the free memory is above the upper threshold or
the angular velocity of the hand exceeds a bound.

The rate at which the daemon examines page frames increases linearly between the free memory
upper threshold and lower threshold (these are tunable system parameters). In a loaded system the hand
will be moved around the loop two to three times a minute.

Upon encountering a reclaimable page that has been modified since it was last paged in, the daemon
must arrange for it to be written back before the page frame containing it can be freed. To accomplish this,
the daemon queues a descriptor of the I/O operation for the paging device driver. Upon completion of the
I/O, the interrupt service routine inserts the descriptor to the cleaned list for further processing by the dae-
mon. The daemon periodically empties the cleaned list by freeing the page frames on it that have not been
reclaimed in the meantime.

Note that as described above, this pageout process implements a variant of the global CLOCK page
replacement algorithm that is known as scheduled sweep [CORB 68, EAST 79].

4.3. Process Creation

In UNIX, every process comes into being through a fork system call whereby a copy of the parent
process is created and identified as the child. This involves the duplication of the parent’s private segments
(data and stack) and the system maintained state information (open files, current directory, etc.).

Within a virtual memory environment including the pagein and pageout primitives described above,
the implementation of the fork system call is conceptually very simple. The parent process copies its vir-
tual address space to the child’s one page at a time. Note that this may require faulting in the invalid por-
tions of the parent’s address space. Since the VAX-11/780 memory-management mechanism can establish
only one mapping at a time, the child’s address space is actually created indirectly through the kernel vir-
tual memory.

Although conceptually simple, the above scheme has undesirable system performance consequences.
Duplication of the parent’s private segments generates a sharp and atypical consumption of memory. Since
a significant percentage of all forks serve only to create system contexts to be passed to another process via
the exec system call, the copying of the parent’s private segments is largely unnecessary. The vfork system
call, described in §5.1, has been introduced to provide an efficient way to create new system contexts within
the current design.



-5-

4.4. Program Execution

The exec system call, whereby a process overlays its address space also has a simple implementation.
The process releases its current virtual memory resources and allocates new ones as determined by the pro-
gram being executed. Then, the program object file is simply read into the process address space which has
been initialized as zero fill on demand pages so as not to generate irrelevant paging from the process’ old
image.

This implementation suffers from the same problems as the above fork implementation. Initiation of
very large programs is very slow, and results in system wide performance degradation due to the loading of
the entire program file in the virtual memory before execution commences. A new loader format which
allows demand paging from the program object file has been designed to improve large program start up
and to eliminate this non-demand situation (see §5.3).

4.5. Process Swapping

Swapping a process out involves releasing the physical memory currently allocated to it (called the
resident set) and writing back its modified pages to its image along with the system maintained state infor-
mation and page tables. Swapping a process in, on the other hand, involves reading in its page tables and
state information and resuming it. Note that as no pages from the process address space are brought in, the
process will have to fault them back in as required. The alternative of swapping the resident set in and out
is not implemented.

4.6. Swap Scheduling

When the amount of available free memory in the system cannot be maintained at a minimal number
of free pages by the pageout daemon, then the system invokes the swap scheduler. In order to free memory,
the swap scheduler will select a process which is resident and swap it (completely) out. The scheduler
prefers first to swap out processes which have been blocked for a significant length of time, and chooses the
process which has been in such a state the longest. If there are no such processes, and it is therefore neces-
sary to swap out a process which is or has recently been active, the system chooses from among the remain-
ing processes the one which has been memory resident the longest.

In choosing an active process to swap out, the system checks to guarantee that the process has had a
minimal amount of time necessary to demand fault in the number of pages which it had when it was last
swapped out (based on maximum expected paging device throughput). This serves to guarantee a minimal
amount of progress by a process each time it is swapped in. When a process is forced out while it has many
pages, it is given lower priority to return to the set of resident processes than ones which swapped with
fewer pages or which are very small.

The swap-in mechanism also recognizes that processes which swapped out with many pages, will
need to fault in pages when they are brought in. The system therefore maintains a notion of a global mem-
ory deficit, which is the expected short term demand for memory from processes recently brought in, based
on the number of pages they were using when they swapped out. The deficit is charged against the free
memory available when deciding whether to bring a process in.

In general, this swap scheduling mechanism does not perform well under very heavy load. The sys-
tem performs much better when memory partitioning can be done by the page replacement algorithm rather
than the swap algorithm. If heavy swapping is to occur on moving head devices, then better algorithms
could be implemented. High speed specialized paging devices, on the other hand, would suggest different
algorithms based on migration.

4.7. Raw I/O

In a virtual memory environment, handling input/output operations directly to/from process address
space without going through the system buffer cache requires special attention. The pages involved in the
I/O must be insured to be valid and locked for the duration of the operation. This is accomplished through
the virtual segment lock/unlock internal primitives. Locking a virtual segment consists of locking pages
that are already valid and faulting/reclaiming invalid pages by simply touching them and refraining from
unlocking the page frame (which is allocated in the locked state) after the pagein completion.



-6-

5. New System Facilities

5.1. Process Creation

In order to allow efficient creation of new processes, a new system primitive vfork has been imple-
mented. After a vfork, the parent and its virtual memory run in the child’s system context, which may be
manipulated as desired for the new image to be created. When a exec is executed in the child’s context, the
virtual memory and parent thread of control are returned to the parent’s context and a new thread of control
and virtual memory are created for the child. This mechanism allows a new context to be created without
any copying.

It should be noted that an implementation of fork using a Copy On Write mechanism would be com-
pletely transparent and nearly as efficient as vfork. Such a mechanism would rely on more general sharing
primitives and data structures than are present in the current version of the system, so it has not been imple-
mented.

5.2. Virtual Reading/Writing of Files

In order that efficient random access be permitted in a portable way to large data files, a pair of new
system calls has been added: vread and vwrite. These calls resemble the normal UNIX read and write
calls, but are potentially much more efficient for sparse and random access to large data files. Vread does
not cause all the data which is virtually read to be immediately transferred to the user’s address space.
Rather, the data can be fetched as required by references, at the system’s discretion. At the point of the
vread, the system merely computes the disk block numbers of the corresponding pages and stores these in
the page tables. Faulting in a page from the file system is thus no more expensive than faulting in a page
from the swap device. In both cases all the mapping information is immediately available or can be easily
computed from in-core information. Vwrite works with vread to allow efficient updating of large data
which is only partially accessed, by rewriting to the file only those pages which have been modified.

Downward compatibility with non-virtual systems is achieved by the fact that read and write calls
have the same semantics as vread and vwrite calls; only the efficiency is different. Upward extensibility
into a more general sharing scheme is also easy to provide, as vread can be easily simulated by a mapping
of the file into the address space with a copy-on-write mechanism on the pages. Although the current
mechanism does not share copies of the same page if it is vread twice, the semantics of the system call do
not prohibit such an implementation if used with a copy-on-write mechanism. Note that vwrite can also be
simulated by a map-out-like mechanism.

5.3. New Loader Format

The same mechanism that is used to implement the vread system call is used to provide a load for-
mat where the pages of the executable image are not pre-loaded, but rather initialized on demand, with the
page block numbers only being bound into the page tables at the point of exec. The only change from the
other UNIX load formats in this new format is the alignment of data in the load file on a page boundary.
Large processes using this format can begin execution very quickly, with page faults causing reading from
the executed file.

6. Perspective

There are a number of facilities which have not been implemented in the first release of the system as
described here.

For example, there are plans to change the system to use 1024 byte disk blocks rather than 512 byte
blocks. It has been observed that in many cases the system is limited by the number of disk transactions
that can be made per second. Larger disk blocks will help improve disk throughput. On machines with
large real memories, using page-pairs in the paging system will also reduce the overhead of the replacement
algorithm and increase throughput to the paging device. Since a page contains only 128 words, it does not
provide a great deal of locality. It is expected that using 1024 byte pages (in effect) will not degrade the
effective memory size significantly.



-7-

Another problem associated with the small page size of the VAX architecture is the rate of growth of
user page tables.† For very large processes, this not only results in a significant amount of real memory
allocated to page tables, but also increases the system overhead in dealing with them. Effectively support-
ing extremely large virtual address spaces will require handling translation faults at the first level (i.e., page
table faults) whereby real memory for page tables is allocated on demand.

The system changes as presented here are the result of approximately one man year of effort. The
base system (a prerelease of UNIX/32V that was maintained as the production system during the paging
development) and the paged system consist of approximately 14800 and 16800 total source lines, respec-
tively. The break down of these numbers amongst the various types of source is presented in Table 6.1. Also
presented is a comparison that excludes comment lines from the source of the two systems.‡ We note that
the actual number of lines modified to obtain the paged system is considerably more than the simple net dif-
ference for each category. In the meantime, for equal configurations, the resident kernel size has increased
by about 12K bytes of program and 26K bytes of data resulting in a total size of about 164K bytes (for a 1
megabyte main memory system).

Total Source Lines Non Comment Lines

Category Base Paged Base Paged
System System System System

Assembly Code 1292 1353 1062 1015

C Code 11581 13405 4891 5614

Header Files 1997 2068 1223 1316

Table 6.1. Source Code Volume Comparison

7. Measurement Results

The system has been instrumented to collect data related to various paging system activities as well
as workload characteristics in general.

7.1. Process Virtual Size Distribution

Being one of the few quantifiable characteristics of a workload that is also of importance in a virtual
memory environment, system-wide distribution of process virtual size was monitored. The results of inte-
grating process data and stack segment size over user CPU time are shown in Fig. 7.1.1. The two sets of
measurements taken almost one month apart indicate an increase from 29.6K to 161.7K bytes and 6.8K to
9.8K bytes for the mean data and stack segment sizes, respectively. The October 18 measurement corre-
sponds to early stages of production run of the system and is representative of the pre-virtual memory
workload. The significant increase in the average data segment size within this short period is attributed to
the rapid growth of Lisp systems including MACSYMA. The insignificant contribution of the stack segment
to total process size is a characteristic of our C intensive workload.

7.2. Page Fault Service Time Distribution

As described in §2, a page can be in three states. Reference to a page in memory but invalid causes a
reclaim, whereas reference to one not in memory results in a page-in operation. The service time distribu-
tions for these two different types of faults is shown in Fig. 7.2.1. For the reclaim time distribution, the first
peak corresponds to reclaims from the loop, while the second bump and the long tail are accounted for by
the load dependent component of the service time due to reclaiming pages of shared text segments.† Note

† Since a page table entry is 4 bytes, user page tables grow one byte for each 128 bytes of user virtual memory.

‡ For the C source code, the number of occurrences of ‘‘;’’ was used as an estimate of the actual number of
source lines that were not comments.

† This operation requires updating the page tables of all processes currently executing the same code, thus
varies with load.



-8-

Fig. 7.1.1. Process size distribution: (a) data, (b) stack segments

that the mean reclaim time of 208 microseconds per reclaim represents a negligible delay to user programs.
Furthermore, the overall system cost of reclaims through which we simulate the missing reference bits of
the architecture has been measured to be less than 0.05% of all CPU cycles.‡

The page-in service time distribution is highly load dependent since it includes all of the queueing as
well as process rescheduling delays. The configuration with the paging activity on the same arm (an RM-03
equivalent disk) as the temporary and the root file systems results in a 54.9 msec total service time. The
significant number of services completed under 20 msec are due to the track buffering capability of the con-
troller being used.

7.3. Comparison with Swap-Based System

In an effort to compare the performance of the system before and after the addition of virtual mem-
ory, a script driven workload was run in a stand-alone manner in both systems under identical configura-
tions consisting of a 1 megabyte main memory, an RP-06 servicing the user file system and an RM-03
shared by the root and temporary file systems in addition to the swapping/paging activity. The swap-based
system used for this comparison was quite sophisticated, performing scatter loading of processes into mem-
ory and partially swapping processes to obtain free memory.

The basic unit of work generated by the script is made up of four concurrent terminal sessions:

lisp A recompilation, using a Lisp compiler, of a portion of the compiler, and a ‘‘dumplisp’’ using
the lisp interpreter to create a new binary version of the compiler. Under the paging system, a
system load format which caused the interpreter and compiler to be demand loaded (rather than
preloaded) was used (cf. §5.3).

ccomp An editor session followed by a recompilation and loading of several C programs which sup-
port the line printer.

‡ This cost is actually a function of the paging activity. The number reported here has been averaged over a 28
hour period in a 1.25M byte real memory configuration



-9-

Fig. 7.2.1. Fault service time distribution: (a) reclaim, (b) page-in

typeset An editor session followed by typesetting of a paper involving mathematical processing, pro-
ducing output for a Versatec raster plotter.

trivial Repeated execution of a trivial command (printing the date) every few seconds.

Staggered multiple initiations of from one to four of these terminal sessions were used to create
increasing levels of load on the system. Figure 7.3.1 gives the average completion time for each category
of session under the two systems. For the non-trivial sessions, completion times were very similar under
the two systems, with the paging version of the system running (in all but one case) faster, and the swap-
based system departing from linear degradation more rapidly. This trend is most noticeable in the response
time for the trivial sessions. Systemwide measures collected during the experiments are given in Figure
7.3.2.



-10-

Fig. 7.3.1. Av erage completion times
(a) lisp, (b) typeset, (c) ccomp, (d) trivial

Fig. 7.3.2. Systemwide measurements
(a) total (b) average completion time, (c) system time, (d) total page traffic

These measurements show the same trend for both total and average completion times as for individual ses-
sions, with the paging system slightly faster and degrading more linearly than the swap system within the
measured range. System overhead was uniformly greater under the paging system, constituting 26 percent
of the CPU utilization as compared to 20 percent under the swap system. User CPU utilization was, how-
ev er, uniformly greater under the paging system, averaging 48 percent, while the swap-based system aver-
aged only 42 percent.

Finally, the total page traffic generated by the two systems was measured. This accounts for both
paging and swapping traffic under the paging system, as well as transfer of all system information (control
blocks and page tables) under both systems. Although the paging system resulted in far fewer total pages
transferred, the actual number of transactions required to accomplish this was much greater since most data
transfers, under the paging system, are due to paging rather than swapping activity, and thus take place in
very small (512 byte) quantities. We are currently installing modifications in the system to use larger block
sizes in both the file and paging subsystems, and expect improved performance from these changes.

Acknowledgments. The cooperation of Bell Laboratories in providing us with an early version of UNIX/32V
is greatly appreciated. We would especially like to thank Dr. Charles Roberts of Bell Laboratories for help-
ing us obtain this release, and acknowledge T. B. London and J. F. Reiser for their continuing advice and
support.

We are grateful to Domenico Ferrari, Richard Fateman, Jehan-François Pâris, William Rowan, Keith
Sklower and Robert Kridle for their participation in the early stages of the design project, and would like to
thank our user community for their patience during the system development period.



-11-

References

[CORB 68] F. J. Corbato, ‘‘A Paging Experiment with the Multics System,’’ Project MAC Memo MAC-
M-384, July, 1968, Mass. Inst. of Tech., published in In Honor of P. M. Morse, ed. Ingard,
MIT Press, 1969, pp. 217-228.

[DEC 78] VAX-11/780 Hardware Handbook, Digital Equipment Corporation, 1978.

[DENN 70] P. J. Denning, ‘‘Virtual Memory,’’ Computer Surveys, vol. 2, no. 3 (Sept. 1970), pp. 937-944.

[EAST 79] M. C. Easton and P. A. Franaszek, ‘‘Use Bit Scanning in Replacement Decisions,’’ IEEE
Tr ans. Comp., vol. 28, no.. 2 (Feb. 1979), pp. 133-141.

[RITC 74] D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’ Commun. Assn. Comp.
Mach., vol. 17, no. 7 (July 1974), pp. 365-375.

[THOM 78] K. Thompson, ‘‘UNIX Implementation,’’ Bell System Tech. Journal, vol. 57, no. 6 (July-Aug.
1978), pp. 1931-1946.


