
Building 4.2BSD UNIX† Systems with Config
June, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes the use of config (8) to configure and create bootable
4.2BSD system images. It discusses the structure of system configuration files and how
to configure systems with non-standard hardware configurations. Sections describing the
preferred way to add new code to the system and how the system’s autoconfiguration pro-
cess operates are included. An appendix contains a summary of the rules used by the sys-
tem in calculating the size of system data structures, and also indicates some of the stan-
dard system size limitations (and how to change them).

†UNIX is a Trademark of Bell Laboratories.

July 27, 1983

Building Systems With Config Introduction

1. INTRODUCTION

Config is a tool used in building 4.2BSD system images. It takes a file describing a system’s tunable
parameters and hardware support, and generates a collection of files which are then used to build a copy of
UNIX appropriate to that configuration. Config simplifies system maintenance by isolating system depen-
dencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the rules which
must be followed when creating these files. Example configuration files are constructed and discussed.

Later sections suggest guidelines to be used in modifying system source and explain some of the
inner workings of the autoconfiguration process. Appendix D summarizes the rules used in calculating the
most important system data structures and indicates some inherent system data structure size limitations
(and how to go about modifying them).

July 27, 1983

Building Systems With Config Configuration File Contents

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cpu type

• system identification

• timezone

• maximum number of users

• location of the root file system

• available hardware

Config allows multiple system images to be generated from a single configuration description. Each
system image is configured for identical hardware, but may have different locations for the root file system
and, possibly, other system devices.

0.1. Machine type

The machine type indicates if the system is going to operate on a DEC VAX-11 computer, or some
other machine on which 4.2BSD operates. The machine type is used to locate certain data files which are
machine specific and, also, to select rules used in constructing the resultant configuration files.

0.2. Cpu type

The cpu type indicates which, of possibly many, cpu’s the system is to operate on. For example, if
the system is being configured for a VAX-11, it could be running on a VAX-11/780, VAX-11/750, or
VAX-11/730. Specifying more than one cpu type implies the system should be configured to run on all the
cpu’s specified. For some types of machines this is not possible and config will print a diagnostic indicating
such.

0.3. System identification

The system identification is a moniker attached to the system, and often the machine on which the
system is to run. For example, at Berkeley we hav e machines named Ernie (Co-VAX), Kim (No-VAX), and
so on. The system identifier selected is used to create a global C ‘‘#define’’ which may be used to isolate
system dependent pieces of code in the kernel. For example, Ernie’s Varian driver used to be special cased
because its interrupt vectors were wired together. The code in the driver which understood how to handle
this non-standard hardware configuration was conditionally compiled in only if the system was for Ernie.

The system identifier ‘‘GENERIC’’ is giv en to a system which will run on any cpu of a particular
machine type; it should not otherwise be used for a system identifier.

0.4. Timezone

The timezone in which the system is to run is used to define the information returned by the gettime-
ofday (2) system call. This value is specified as the number of hours east or west of GMT. Neg ative num-
bers indicate a value east of GMT. The timezone specification may also indicate the type of daylight sav-
ings time rules to be applied.

0.5. Maximum number of users

The system allocates many system data structures at boot time based on the maximum number of
users the system will support. This number is normally between 8 and 40, depending on the hardware and
expected job mix. The rules used to calculate system data structures are discussed in Appendix D.

July 27, 1983

Building Systems With Config - 3 - Configuration File Contents

0.6. Root file system location

When the system boots it must know the location of the root of the file system tree. This location and
the part(s) of the disk(s) to be used for paging and swapping must be specified in order to create a complete
configuration description. Config uses many rules to calculate default locations for these items; these are
described in Appendix B.

When a generic system is configured, the root file system is left undefined until the system is booted.
In this case, the root file system need not be specified, only that the system is a generic system.

0.7. Hardware devices

When the system boots it goes through an autoconfiguration phase. During this period, the system
searches for all those hardware devices which the system builder has indicated might be present. This
probing sequence requires certain pieces of information such as register addresses, bus interconnects, etc.
A system’s hardware may be configured in a very flexible manner or be specified without any flexibility
whatsoever. Most people do not configure hardware devices into the system unless they are currently
present on the machine, expect them to be present in the near future, or are simply guarding against a hard-
ware failure somewhere else at the site (it is often wise to configure in extra disks in case an emergency
requires moving one off a machine which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration file. As
such, a large portion of this document will be spent understanding it. Section 6.3 contains a description of
the autoconfiguration process, as it applies to those planning to write, or modify existing, device drivers.

0.8. Optional items

Other than the mandatory pieces of information described above, it is also possible to include various
optional system facilities. For example, 4.2BSD can be configured to support binary compatibility for pro-
grams built under 4.1BSD. Also, optional support is provided for disk quotas and tracing the performance
of the virtual memory subsystem. Any optional facilities to be configured into the system are specified in
the configuration file. The resultant files generated by config will automatically include the necessary
pieces of the system.

July 27, 1983

Building Systems With Config System Building Process

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We assume the sys-
tem source is located in the ‘‘/sys’’ directory and that, initially, the system is being configured from source
code.

Under normal circumstances there are 5 steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.

3) Run config on the configuration file to generate the files required to compile and load the system image.

4) Construct the source code interdependency rules for the configured system.

5) Compile and load the system with make(1).

Steps 1 and 2 are usually done only once. When a system configuration changes it usually suffices to
just run config on the modified configuration file, rebuild the source code dependencies, and remake the
system. Sometimes, however, configuration dependencies may not be noticed in which case it is necessary
to clean out the relocatable object files saved in the system’s directory; this will be discussed later.

3.1. Creating a configuration file

Configuration files normally reside in the directory ‘‘/sys/conf ’’. A configuration file is most easily
constructed by copying an existing configuration file and modifying it. The 4.2BSD distribution contains a
number of configuration files for machines at Berkeley, one may be suitable or, in worst case, you may take
the generic configuration file and edit that.

The configuration file must have the same name as the directory in which the configured system is to
be built. Further, config assumes this directory is located in the parent directory of the directory in which it
is run. For example, the generic system has a configuration file ‘‘/sys/conf/GENERIC’’ and an accompany-
ing directory named ‘‘/sys/GENERIC’’. In general it is unwise to move your configuration directories out
of ‘‘/sys’’ as most of the system code and the files created by config use pathnames of the form ‘‘../’’. If
you are running out of space on the file system where the configuration directories are located there is a
mechanism for sharing relocatable object files between systems; this is described later.

When building your configuration file, be sure to include the items described in section 2. In particu-
lar, the machine type, cpu type, timezone, system identifier, maximum users, and root device must be speci-
fied. The specification of the hardware present may take a bit of work; particularly if your hardware is con-
figured at non-standard places (e.g. device registers located at funny places or devices not supported by the
system). Section 4 of this document gives a detailed description of the configuration file syntax, section 5
explains some sample configuration files, and section 6 discusses how to add new devices to the system. If
the devices to be configured are not already described in one of the existing configuration files you should
check the manual pages in section 4 of the UNIX Programmers Manual. For each supported device, the
manual page synopsis entry gives a sample configuration line.

Once the configuration file is complete, run it through config and look for any errors. Never try and
use a system which config has complained about; the results are unpredictable. For the most part, config’s
error diagnostics are self explanatory. It may be the case that the line numbers given with the error mes-
sages are off by one.

A successful run of config on your configuration file will generate a number of files in the configura-
tion directory. These files are:

• A file to be used by make (1) in compiling and loading the system.

• One file for each possible system image for your machine which describes where swapping, the root file
system, and other miscellaneous system devices are located.

• A collection of header files, one per possible device the system supports, which define the hardware
configured.

July 27, 1983

Building Systems With Config - 5 - System Building Process

• A file containing the i/o configuration tables used by the system during its autoconfiguration phase.

• An assembly language file of interrupt vectors which connect interrupts from your machine’s external
buses to the main system path for handling interrupts.

Unless you have reason to doubt config, or are curious how the system’s autoconfiguration scheme
works, you should never hav e to look at any of these files.

3.2. Constructing source code dependencies

When config is done generating the files needed to compile and link your system it will terminate
with a message of the form ‘‘Don’t forget to run make depend’’. This is a reminder that you should change
over to the configuration directory for the system just configured and type ‘‘make depend’’ to build the
rules used by make to recognize interdependencies in the system source code. This will insure that any
changes to a piece of the system source code will result in the proper modules being recompiled the next
time make is run.

This step is particularly important if your site makes changes to the system include files. The rules
generated specify which source code files are dependent on which include files. Without these rules, make
will not recognize when it must rebuild modules due to a system header file being modified. Note that
dependency rules created by this step only reflect directly included files. That is, if file ‘‘a’’ includes
another file ‘‘b’’, which includes yet another, say ‘‘c’’, and then ‘‘c’’ is modified, make will not recognize
that ‘‘a’’ should be recompiled. It is best to keep include file dependencies only one level deep.

3.3. Building the system

The makefile constructed by config should allow a new system to be rebuilt by simply typing ‘‘make
image-name’’. For example, if you have named your bootable system image ‘‘vmunix’’, then ‘‘make vmu-
nix’’ will generate a bootable image named ‘‘vmunix’’. Alternate system image names are used when the
root file system location and/or swapping configuration is done in more than one way. The makefile which
config creates has entry points for each system image defined in the configuration file. Thus, if you have
configured ‘‘vmunix’’ to be a system with the root file system on an ‘‘hp’’ device and ‘‘hkvmunix’’ to be a
system with the root file system on an ‘‘hk’’ device, then ‘‘make vmunix hkvmunix’’ will generate binary
images for each.

Note that the name of a bootable image is different from the system identifier. All bootable images
are configured for the same system; only the information about the root file system and paging devices dif-
fer. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used symbols in the
symbol table of the system image; the makefile generated by config does this automatically for you. This
is advantageous for programs such as ps (1) and vmstat (1), which run much faster when the symbols they
need are located at the front of the symbol table. Remember also that many programs expect the currently
executing system to be named ‘‘/vmunix’’. If you install a new system and name it something other than
‘‘/vmunix’’, many programs are likely to give strange results.

3.4. Sharing object modules

If you have many systems which are all built on a single machine there are at least two approaches to
saving time in building system images. The best way is to have a single system image which is run on all
machines. This is attractive since it minimizes disk space used and time required to rebuild systems after
making changes. However, it is often the case that one or more systems will require a separately configured
system image. This may be due to limited memory (building a system with many unused device drivers
can be expensive), or to configuration requirements (one machine may be a development machine where
disk quotas are not needed, while another is a production machine where they are), etc. In these cases it is
possible for common systems to share relocatable object modules which are not configuration dependent;
most of the module in the directory ‘‘/sys/sys’’ are of this sort.

To share object modules, a generic system should be built. Then, for each system configure the sys-
tem as before, but before recompiling and linking the system, type ‘‘make links’’. This will cause the sys-
tem to be searched for source modules which are safe to share between systems and generate symbolic

July 27, 1983

Building Systems With Config - 6 - System Building Process

links in the current directory to the appropriate object modules in the directory ‘‘../GENERIC’’. A shell
script, ‘‘makelinks’’ is generated with this request and may be checked for correctness. The file
‘‘/sys/conf/defines’’ contains a list of symbols which we believe are safe to ignore when checking the
source code for modules which may be shared. Note that this list includes the definitions used to condition-
ally compile in the virtual memory tracing facilities, and the trace point support used only rarely (even at
Berkeley). It may be necessary to modify this file to reflect local needs. Note further, that as described pre-
viously, interdependencies which are not directly visible in the source code are not caught. This means that
if you place per-system dependencies in an include file, they will not be recognized and the shared code
may be selected in an unexpected fashion.

3.5. Building profiled systems

It is simple to configure a system which will automatically collect profiling information as it oper-
ates. The profiling data may be collected with kgmon (8) and processed with gprof (1) to obtain information
regarding the system’s operation. Profiled systems maintain histograms of the program counter as well as
the number of invocations of each routine. The gprof (1) command will also generate a dynamic call graph
of the executing system and propagate time spent in each routine along the arcs of the call graph (consult
the gprof documentation for elaboration). The program counter sampling can be driven by the system
clock, or if you have an alternate real time clock this can be used. The latter is highly recommended as use
of the system clock will result in statistical anomalies and time spent in the clock routine will not be accu-
rately accounted for.

To configure a profiled system, the −p option should be supplied to config. A profiled system is
about 5-10% larger in its text space due to the calls to count the subroutine invocations. When the system
executes, the profiling data is stored in a buffer which is 1.2 times the size of the text space. The overhead
for running a profiled system varies; under normal load we see anywhere from 5-25% of the system time
spent in the profiling code.

Note that systems configured for profiling should not be shared as described above unless all the
other shared systems are also to be profiled.

July 27, 1983

Building Systems With Config Configuration File Syntax

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A complete gram-
mar for the input language can be found in Appendix A and may be of use if you should have problems
with syntax errors.

A configuration file is broken up into three logical pieces:

• configuration parameters global to all system images specified in the configuration file,

• parameters specific to each system image to be generated, and

• device specifications.

4.1. Global configuration parameters

The global configuration parameters are the type of machine, cpu types, options, timezone, system
identifier, and maximum users. Each is specified with a separate line in the configuration file.

machine type
The system is to run on the machine type specified. No more than one machine type can appear in
the configuration file. Legal values are vax and sun.

cpu ‘‘type’’
This system is to run on the cpu type specified. More than one cpu type specification can appear in a
configuration file. Legal types for a vax machine are VAX780,VAX750, and VAX730.

options optionlist
Compile the listed optional code into the system. Options in this list are separated by commas. Pos-
sible options are listed at the top of the generic makefile. A line of the form ‘‘options
FUNNY,HAHA’’ generates global ‘‘#define’’s −DFUNNY −DHAHA in the resultant makefile. An
option may be given a value by following its name with ‘‘=’’, then the value enclosed in (double)
quotes. None of the standard options use such a value. The following options are currently in use:
COMPAT (include code for compatiblity with 4.1BSD binaries), INET (Internet communication pro-
tocols), PUP (support for a PUP raw interface), and QUOTA (enable disk quotas). There are addi-
tional options which are associated with certain peripheral devices; those are listed in the Synopsis
section of the manual page for the device.

timezone number [dst [number]]
Specifies the timezone you are in. This is measured in the number of hours your timezone is west of
GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers indicate hours east of GMT. If you
specify dst, the system will operate under daylight savings time. An optional integer or floating point
number may be included to specify a particular daylight saving time correction algorithm; the default
value is 1, indicating the United States. Other values are: 2 (Australian style), 3 (Western European),
4 (Middle European), and 5 (Eastern European). See gettimeofday (2) and ctime (3) for more infor-
mation.

ident name
This system is to be known as name. This is usually a cute name like ERNIE (short for Ernie Co-
Vax) or VAXWELL (for Vaxwell Smart).

maxusers number
The maximum expected number of simultaneously active user on this system is number. This num-
ber is used to size several system data structures.

4.2. System image parameters

Multiple bootable images may be specified in a single configuration file. The systems will have the
same global configuration parameters and devices, but the location of the root file system and other system
specific devices may be different. A system image is specified with a ‘‘config’’ line:

July 27, 1983

Building Systems With Config - 8 - Configuration File Syntax

config sysname config-clauses

The sysname field is the name given to the loaded system image; almost everyone names their standard sys-
tem image ‘‘vmunix’’. The configuration clauses are one or more specifications indicating where the root
file system is located, how many paging devices there are and where they go. The device used by the sys-
tem to process argument lists during execve(2) calls may also be specified, though in practice this is almost
always selected by config using one of its rules for selecting default locations for system devices.

A configuration clause is one of the following

root [on] root-device
swap [on] swap-device [and swap-device]
dumps [on] dump-device
args [on] arg-device

(the ‘‘on’’ is optional.) Multiple configuration clauses are separated by white space; config allows specifi-
cations to be continued across multiple lines by beginning the continuation line with a tab character. The
‘‘root’’ clause specifies where the root file system is located, the ‘‘swap’’ clause indicates swapping and
paging area(s), the ‘‘dumps’’ clause can be used to force system dumps to be taken on a particular device,
and the ‘‘args’’ clause can be used to specify that argument list processing for execve should be done on a
particular disk.

The device names supplied in the clauses may be fully specified as a device, unit, and file system par-
tition; or underspecified in which case config will use builtin rules to select default unit numbers and file
system partitions. The defaulting rules are a bit complicated as they are dependent on the overall system
configuration. For example, the swap area need not be specified at all if the root device is specified; in this
case the swap area is placed in the ‘‘b’’ partition of the same disk where the root file system is located.
Appendix B contains a complete list of the defaulting rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a per-
machine basis. A file, ‘‘/sys/conf/devices.machine’’ (where ‘‘machine’’ is the machine type specified in the
configuration file), is used to map a device name to its major block device number. The minor device num-
ber is calculated using the standard disk partitioning rules: on unit 0, partition ‘‘a’’ is minor device 0, parti-
tion ‘‘b’’ is minor device 1, and so on; for units other than 0, add 8 times the unit number to get the minor
device.

If the default mapping of device name to major/minor device number is incorrect for your configura-
tion, it can be replaced by an explicit specification of the major/minor device. This is done by substituting

major x minor y

where the device name would normally be found. For example,

config vmunix root on major 99 minor 1

Normally, the areas configured for swap space are sized by the system at boot time. If a non-standard
partition size is to be used for one or more swap areas, this can also be specified. To do this, the device
name specified for a swap area should have a ‘‘size’’ specification appended. For example,

config vmunix root on hp0 swap on hp0b size 1200

would force swapping to be done in partition ‘‘b’’ of ‘‘hp0’’ and the swap partition size would be set to
1200 sectors. A swap area sized larger than the associated disk partition is trimmed to the partition size.

To create a generic configuration, only the clause ‘‘swap generic’’ should be specified; any extra
clauses will cause an error.

4.3. Device specifications

Each device attached to a machine must be specified to config so that the system generated will know
to probe for it during the autoconfiguration process carried out at boot time. Hardware specified in the con-
figuration need not actually be present on the machine where the generated system is to be run. Only the
hardware actually found at boot time will be used by the system.

The specification of hardware devices in the configuration file parallels the interconnection hierarchy
of the machine to be configured. On the VAX, this means a configuration file must indicate what

July 27, 1983

Building Systems With Config - 9 - Configuration File Syntax

MASSBUS and UNIBUS adapters are present, and to which nexi they might be connected*. Similarly,
devices and controllers must be indicated as possibly being connected to one or more adapters. A device
description may provide a complete definition of the possible configuration parameters or it may leave cer-
tain parameters undefined and make the system probe for all the possible values. The latter allows a single
device configuration list to match many possible physical configurations. For example, a disk may be indi-
cated as present at UNIBUS adapter 0, or at any UNIBUS adapter which the system locates at boot time.
The latter scheme, termed wildcarding, allows more flexibility in the physical configuration of a system; if
a disk must be moved around for some reason, the system will still locate it at the alternate location.

A device specification takes one of the following forms:

master device-name device-info
controller device-name device-info [interrupt-spec]
device device-name device-info interrupt-spec
disk device-name device-info
tape device-name device-info

A ‘‘master’’ is a MASSBUS tape controller; a ‘‘controller’’ is a disk controller, a UNIBUS tape controller, a
MASSBUS adapter, or a UNIBUS adapter. A ‘‘device’’ is an autonomous device which connects directly
to a UNIBUS adapter (as opposed to something like a disk which connects through a disk controller).
‘‘Disk’’ and ‘‘tape’’ identify disk drives and tape drives connected to a ‘‘controller’’ or ‘‘master’’.

The device-name is one of the standard device names, as indicated in section 4 of the UNIX Pro-
grammers Manual, concatenated with the logical unit number to be assigned the device (the logical unit
number may be different than the physical unit number indicated on the front of something like a disk; the
logical unit number is used to refer to the UNIX device, not the physical unit number). For example,
‘‘hp0’’ is logical unit 0 of a MASSBUS storage device, even though it might be physical unit 3 on MASS-
BUS adapter 1.

The device-info clause specifies how the hardware is connected in the interconnection hierarchy. On
the VAX, UNIBUS and MASSBUS adapters are connected to the internal system bus through a nexus.
Thus, one of the following specifications would be used:

controller mba0 at nexus x
controller uba0 at nexus x

To tie a controller to a specific nexus, ‘‘x’’ would be supplied as the number of that nexus; otherwise ‘‘x’’
may be specified as ‘‘?’’, in which case the system will probe all nexi present looking for the specified con-
troller.

The remaining interconnections on the VAX are:

• a controller may be connected to another controller (e.g. a disk controller attached to a UNIBUS
adapter),

• a master is always attached to a controller (a MASSBUS adaptor),

• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and

• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS adapters).

The following lines give an example of each of these interconnections:

controller hk0 at uba0 ...
master ht0 at mba0 ...
tape tu0 at ht0 ...
disk rk1 at hk0 ...
device dz0 at uba0 ...

Any piece of hardware which may be connected to a specific controller may also be wildcarded across mul-
tiple controllers.

* While VAX-11/750’s and VAX-11/730 do not actually have nexi, the system treats them as having simulated
nexi to simplify device configuration.

July 27, 1983

Building Systems With Config - 10 - Configuration File Syntax

The final piece of information needed by the system to configure devices is some indication of where
or how a device will interrupt. For tapes and disks, simply specifying the slave or drive number is suffi-
cient to locate the control status register for the device. For controllers, the control status register must be
given explicitly, as well how many interrupt vectors are used and the names of the routines to which they
should be bound. Thus the example lines given above might be completed as:

controller hk0 at uba0 csr 0177440 vector rkintr
master ht0 at mba0 drive 0
tape tu0 at ht0 slave 0
disk rk1 at hk0 drive 1
device dz0 at uba0 csr 0160100 vector dzrint dzxint

Certain device drivers require extra information passed to them at boot time to tailor their operation
to the actual hardware present. The line printer driver, for example, needs to know how many columns are
present on each non-standard line printer (i.e. a line printer with other than 80 columns). The drivers for
the terminal multiplexors need to know which lines are attached to modem lines so that no one will be
allowed to use them unless a connection is present. For this reason, one last parameter may be specified to
a device, a flags field. It has the syntax

flags number

and is usually placed after the csr specification. The number is passed directly to the associated driver. The
manual pages in section 4 should be consulted to determine how each driver uses this value (if at all).
Communications interface drivers commonly use the flags to indicate whether modem control signals are in
use.

The exact syntax for each specific device is given in the Synopsis section of its manual page in sec-
tion 4 of the manual.

4.4. Pseudo-devices

A number of drivers and software subsystems are treated like device drivers without any associated
hardware. To include any of these pieces, a ‘‘pseudo-device’’ specification must be used. A specification
for a pseudo device takes the form

pseudo-device device-name [howmany]

Examples of pseudo devices are bk, the Berknet line discipline, pty, the pseudo terminal driver
(where the optional howmany value indicates the number of pseudo terminals to configure, 32 default), and
inet, the DARPA Internet protocols (one must also specify INET in the ‘‘options’’). Other pseudo devices
for the network include loop, the software loopback interface, imp (required when a CSS or ACC imp is
configured), and ether (used by the Address Resolution Protocol on 10 Mb/sec ethernets). More informa-
tion on configuring each of these can also be found in section 4 of the manual.

July 27, 1983

Building Systems With Config Sample Configuration Files

5. SAMPLE CONFIGURATION FILES

In this section we will consider how to configure a sample VAX-11/780 system on which the hard-
ware can be reconfigured to guard against various hardware mishaps. We then study the rules needed to
configure a VAX-11/750 to run in a networking environment.

5.1. VAX-11/780 System

Our VAX-11/780 is configured with hardware recommended in the document ‘‘Hints on Configuring
a VAX for 4.2BSD’’ (this is one of the high-end configurations). Table 1 lists the pertinent hardware to be
configured.

Item Vendor Connection Name Reference

cpu DEC VAX780
MASSBUS controller Emulex nexus ? mba0 hp(4)
disk Fujitsu mba0 hp0
disk Fujitsu mba0 hp1
MASSBUS controller Emulex nexus ? mba1
disk Fujitsu mba1 hp2
disk Fujitsu mba1 hp3
UNIBUS adapter DEC nexus ?
tape controller Emulex uba0 tm0 tm(4)
tape drive Kennedy tm0 te0
tape drive Kennedy tm0 te1
terminal multiplexor Emulex uba0 dh0 dh(4)
terminal multiplexor Emulex uba0 dh1
terminal multiplexor Emulex uba0 dh2

Table 1. VAX-11/780 Hardware support.

We will call this machine ANSEL and construct a configuration file one step at a time.

The first step is to fill in the global configuration parameters. The machine is a VAX, so the machine
type is ‘‘vax’’. We will assume this system will run only on this one processor, so the cpu type is
‘‘VAX780’’. The options are empty since this is going to be a ‘‘vanilla’’ VAX. The system identifier, as
mentioned before, is ‘‘ANSEL’’ and the maximum number of users we plan to support is about 40. Thus
the beginning of the configuration file looks like this:

#
ANSEL VAX (a picture perfect machine)
#
machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
maxusers 40

To this we must then add the specifications for three system images. The first will be our standard
system with the root on ‘‘hp0’’ and swapping on the same drive as the root. The second will have the root
file system in the same location, but swap space interleaved among drives on each controller. Finally, the
third will be a generic system, to allow us to boot off any of the four disk drives.

config vmunix root on hp0
config hpvmunix root on hp0 swap on hp0 and hp2
config genvmunix swap generic

July 27, 1983

Building Systems With Config - 12 - Sample Configuration Files

Finally, the hardware must be specified. Let us first just try transcribing the information from Table
1.

controller mba0 at nexus ?
disk hp0 at mba0 disk 0
disk hp1 at mba0 disk 1
controller mba1 at nexus ?
disk hp2 at mba1 disk 2
disk hp3 at mba1 disk 3
controller uba0 at nexus ?
controller tm0 at uba0 csr 0172520 vector tmintr
tape te0 at tm0 drive 0
tape te1 at tm0 drive 1
device dh0 at uba0 csr 0160020 vector dhrint dhxint
device dm0 at uba0 csr 0170500 vector dmintr
device dh1 at uba0 csr 0160040 vector dhrint dhxint
device dh2 at uba0 csr 0160060 vector dhrint dhxint

(Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the ‘‘dm0’’ device.)

This will suffice, but leaves us with little flexibility. Suppose our first disk controller were to break.
We would like to recable the drives normally on the second controller so that all our disks could still be
used without reconfiguring the system. To do this we wildcard the MASSBUS adapter connections and
also the slave numbers. Further, we wildcard the UNIBUS adapter connections in case we decide some
time in the future to purchase another adapter to offload the single UNIBUS we currently have. The revised
device specifications would then be:

controller mba0 at nexus ?
disk hp0 at mba? disk ?
disk hp1 at mba? disk ?
controller mba1 at nexus ?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller uba0 at nexus ?
controller tm0 at uba? csr 0172520 vector tmintr
tape te0 at tm0 drive 0
tape te1 at tm0 drive 1
device dh0 at uba? csr 0160020 vector dhrint dhxint
device dm0 at uba? csr 0170500 vector dmintr
device dh1 at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

The completed configuration file for ANSEL is shown in Appendix C.

5.2. VAX-11/750 with network support

Our VAX-11/750 system will be located on two 10Mb/s Ethernet local area networks and also the
DARPA Internet. The system will have a MASSBUS drive for the root file system and two UNIBUS
drives. Paging is interleaved among all three drives. We hav e sold our standard DEC terminal multiplexors
since this machine will be accessed solely through the network. This machine is not intended to have a
large user community, it does not have a great deal of memory. First the global parameters:

July 27, 1983

Building Systems With Config - 13 - Sample Configuration Files

#
UCBVAX (Gateway to the world)
#
machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
maxusers 32
options INET

The multiple cpu types allow us to replace UCBVAX with a more powerful cpu without reconfigur-
ing the system. The value of 32 given for the maximum number of users is done to force the system data
structures to be over-allocated. That is desirable on this machine because, while it is not expected to sup-
port many users, it is expected to perform a great deal of work. Upping this value results in a larger disk
buffer cache than would normally be allocated if the true number of users were given. The ‘‘INET’’ indi-
cates we plan to use the DARPA standard Internet protocols on this machine.

The system images and disks are configured in next.

config vmunix root on hp swap on hp and rk0 and rk1
config upvmunix root on up
config hkvmunix root on hk swap on rk0 and rk1

controller mba0 at nexus ?
controller uba0 at nexus ?
disk hp0 at mba? drive 0
disk hp1 at mba? drive 1
controller sc0 at uba? csr 0176700 vector upintr
disk up0 at sc0 drive 0
disk up1 at sc0 drive 1
controller hk0 at uba? csr 0177440 vector rkintr
disk rk0 at hk0 drive 0
disk rk1 at hk0 drive 1

UCBVAX requires heavy interleaving of its paging area to keep up with all the mail traffic it handles.
The limiting factor on this system’s performance is usually the number of disk arms, as opposed to memory
or cpu cycles. The extra UNIBUS controller, ‘‘sc0’’, is in case the MASSBUS controller breaks and a spare
controller must be installed (most of our old UNIBUS controllers have been replaced with the newer
MASSBUS controllers, so we have a number of these around as spares).

Finally, we add in the network support. The Internet protocols require an ‘‘inet’’ pseudo-device in
addition to the global ‘‘INET’’ option specified above. Pseudo terminals are needed to allow users to log in
across the network (remember the only hardwired terminal is the console). The connection to the Internet
is through an IMP, this requires yet another pseudo-device (in addition to the actual hardware device used
by the IMP software). And, finally, there are the two Ethernet devices. These use a special protocol, the
Address Resolution Protocol (ARP), to map between Internet and Ethernet addresses. Thus, yet another
pseudo-device is needed. The additional device specifications are show below.

July 27, 1983

Building Systems With Config - 14 - Sample Configuration Files

pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device acc0 at uba? csr 0167600 vector accrint accxint
pseudo-device ether
device ec0 at uba? csr 0164330 vector ecrint eccollide ecxint
device il0 at uba? csr 0164000 vector ilrint ilcint

The completed configuration file for UCBVAX is shown in Appendix C.

5.3. Miscellaneous comments

It should be noted in these examples that neither system was configured to use disk quotas or the
4.1BSD compatibility mode. To use these optional facilities, and others, we would probably clean out our
current configuration, reconfigure the system, then recompile and relink the system image(s). This could,
of course, be avoided by figuring out which relocatable object files are affected by the reconfiguration, then
reconfiguring and recompiling only those files affected by the configuration change. This technique should
be used carefully.

July 27, 1983

Building Systems With Config Adding New Devices

6. ADDING NEW SYSTEM SOFTWARE

This section is not for the novice, it describes some of the inner workings of the configuration process
as well as the pertinent parts of the system autoconfiguration process. It is intended to give those people
who intend to install new device drivers and/or other system facilities sufficient information to do so in the
manner which will allow others to easily share the changes.

This section is broken into four parts:

• general guidelines to be followed in modifying system code,

• how to add a device driver to 4.2BSD,

• how UNIBUS device drivers are autoconfigured under 4.2BSD on the VAX, and

• how to add non-standard system facilities to 4.2BSD.

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them with

#ifdef SITENAME
...
#endif

to allow your source to be easily distributed to others, and also to simplify diff (1) listings. If you choose
not to use a source code control system (e.g. SCCS, RCS), and perhaps even if you do, it is recommended
that you save the old code with something of the form:

#ifndef SITENAME
...
#endif

We try to isolate our site-dependent code in individual files which may be configured with pseudo-device
specifications.

Indicate machine specific code with ‘‘#ifdef vax’’. 4.2BSD has undergone extensive work to make it
extremely portable to machines with similar architectures − you may someday find yourself trying to use a
single copy of the source code on multiple machines.

Use lint periodically if you make changes to the system. The 4.2BSD release has only one line of lint
in it. It is very simple to lint the kernel. Use the LINT configuration file, designed to pull in as much of the
kernel source code as possible, in the following manner.

$ cd /sys/conf
$ mkdir ../LINT
$ config LINT
$ cd ../LINT
$ make depend
$ make assym.s
$ make −k lint > linterrs 2>&1 &
(or for users of csh (1))
% make −k >& linterrs

This takes about 45 minutes on a lightly loaded VAX-11/750, but is well worth it.

6.2. Adding device drivers to 4.2BSD

The i/o system and config have been designed to easily allow new device support to be added. As
described in ‘‘Installing and Operating 4.2BSD on the VAX’’, the system source directories are organized
as follows:

July 27, 1983

Building Systems With Config - 16 - Adding New Devices

/sys/h machine independent include files
/sys/sys machine independent system source files
/sys/conf site configuration files and basic templates
/sys/net network independent, but network related code
/sys/netinet DARPA Internet code
/sys/netimp IMP support code
/sys/netpup PUP-1 support code
/sys/vax VAX specific mainline code
/sys/vaxif VAX network interface code
/sys/vaxmba VAX MASSBUS device drivers and related code
/sys/vaxuba VAX UNIBUS device drivers and related code

Existing block and character device drivers for the VAX reside in ‘‘/sys/vax’’, ‘‘/sys/vaxmba’’, and
‘‘/sys/vaxuba’’. Network interface drivers reside in ‘‘/sys/vaxif ’’. Any new device drivers should be placed
in the appropriate source code directory and named so as not to conflict with existing devices. Normally,
definitions for things like device registers are placed in a separate file in the same directory. For example,
the ‘‘dh’’ device driver is named ‘‘dh.c’’ and its associated include file is named ‘‘dhreg.h’’.

Once the source for the device driver has been placed in a directory, the file
‘‘/sys/conf/files.machine’’, and possibly ‘‘/sys/conf/devices.machine’’ should be modified. The files files in
the conf directory contain a line for each source or binary-only file in the system. Those files which are
machine independent are located in ‘‘/sys/conf/files’’ while machine specific files are in
‘‘/sys/conf/files.machine’’. The ‘‘devices.machine’’ file is used to map device names to major block device
numbers. If the device driver being added provides support for a new disk you will want to modify this file
(the format is obvious).

The format of the files file has grown somewhat complex over time. Entries are normally of the form

vaxuba/foo.c optional foo device-driver

where the keyword optional indicates that to compile the ‘‘foo’’ driver into the system it must be specified
in the configuration file. If instead the driver is specified as standard, the file will be loaded no matter what
configuration is requested. This is not normally done with device drivers. The fact that the file is specified
as a device-driver results, on the VAX, in the compilation including a −i option for the C optimizer. This is
required when pointer references are made to memory locations in the VAX i/o address space.

Aside from including the driver in the files file, it must also be added to the device configuration
tables. These are located in ‘‘/sys/vax/conf.c’’, or similar for machines other than the VAX. If you don’t
understand what to add to this file, you should study an entry for an existing driver. Remember that the
position in the block device table specifies what the major block device number is, this is needed in the
‘‘devices.machine’’ file if the device is a disk.

With the configuration information in place, your configuration file appropriately modified, and a
system reconfigured and rebooted you should incorporate the shell commands needed to install the special
files in the file system to the file ‘‘/dev/MAKEDEV’’ or ‘‘/dev/MAKEDEV.local’’. This is discussed in the
document ‘‘Installing and Operating 4.2BSD on the VAX’’.

6.3. Autoconfiguration on the VAX

4.2BSD (and 4.1BSD) require all device drivers to conform to a set of rules which allow the system
to:

1) support multiple UNIBUS and MASSBUS adapters,

2) support system configuration at boot time, and

3) manage resources so as not to crash when devices request resources which are unavailable.

In addition, devices such as the RK07 which require everyone else to get off the UNIBUS when they are
running need cooperation from other DMA devices if they are to work. Since it is unlikely that you will be
writing a device driver for a MASSBUS device, this section is devoted exclusively to describing the i/o sys-
tem and autoconfiguration process as it applies to UNIBUS devices.

July 27, 1983

Building Systems With Config - 17 - Adding New Devices

Each UNIBUS on a VAX has a set of resources:

• 496 map registers which are used to convert from the 18 bit UNIBUS addresses into the much larger
VAX address space.

• Some number of buffered data paths (3 on an 11/750, 15 on an 11/780, 0 on an 11/730) which are
used by high speed devices to transfer data using fewer bus cycles.

There is a structure of type struct uba_hd in the system per UNIBUS adapter used to manage these
resources. This structure also contains a linked list where devices waiting for resources to complete DMA
UNIBUS activity have requests waiting.

There are three central structures in the writing of drivers for UNIBUS controllers; devices which do
not do DMA i/o can often use only two of these structures. The structures are struct uba_ctlr, the UNIBUS
controller structure, struct uba_device the UNIBUS device structure, and struct uba_driver, the UNIBUS
driver structure. The uba_ctlr and uba_device structures are in one-to-one correspondence with the defini-
tions of controllers and devices in the system configuration. Each driver has a struct uba_driver structure
specifying an internal interface to the rest of the system.

Thus a specification

controller sc0 at uba0 csr 0176700 vector upintr

would cause a struct uba_ctlr to be declared and initialized in the file ioconf.c for the system configured
from this description. Similarly specifying

disk up0 at sc0 drive 0

would declare a related uba_device in the same file. The up.c driver which implements this driver specifies
in its declarations:

int upprobe(), upslave(), upattach(), updgo(), upintr();
struct uba_ctlr *upminfo[NSC];
struct uba_device *updinfo[NUP];
u_short upstd[] = { 0776700, 0774400, 0776300, 0 };
struct uba_driver scdriver =

{ upprobe, upslave, upattach, updgo, upstd, "up", updinfo, "sc", upminfo };

initializing the uba_driver structure. The driver will support some number of controllers named sc0, sc1,
etc, and some number of drives named up0, up1, etc. where the drives may be on any of the controllers (that
is there is a single linear name space for devices, separate from the controllers.)

We now explain the fields in the various structures. It may help to look at a copy of vaxuba/ubareg .h,
h/ubavar.h and drivers such as up.c and dz.c while reading the descriptions of the various structure fields.

uba_driver structure

One of these structures exists per driver. It is initialized in the driver and contains functions used by
the configuration program and by the UNIBUS resource routines. The fields of the structure are:

ud_probe
A routine which is given a caddr_t address as argument and should cause an interrupt on the device
whose control-status register is at that address in virtual memory. It may be the case that the device
does not exist, so the probe routine should use delays (via the DELAY(n) macro which delays for n
microseconds) rather than waiting for specific events to occur. The routine must not declare its argu-
ment as a register parameter, but must declare

register int br, cvec;

as local variables. At boot time the system takes special measures that these variables are ‘‘value-
result’’ parameters. The br is the IPL of the device when it interrupts, and the cvec is the interrupt
vector address on the UNIBUS. These registers are actually filled in in the interrupt handler when an
interrupt occurs.

July 27, 1983

Building Systems With Config - 18 - Adding New Devices

As an example, here is the up.c probe routine:

upprobe(reg)
caddr_t reg;

{
register int br, cvec;

#ifdef lint
br = 0; cvec = br; br = cvec;

#endif
((struct updevice *)reg)->upcs1 = UP_IE|UP_RDY;
DELAY(10);
((struct updevice *)reg)->upcs1 = 0;
return (sizeof (struct updevice));

}

The definitions for lint serve to indicate to it that the br and cvec variables are value-result. The
statements here interrupt enable the device and write the ready bit UP_RDY. The 10 microsecond
delay insures that the interrupt enable will not be canceled before the interrupt can be posted. The
return of ‘‘sizeof (struct updevice)’’ here indicates that the probe routine is satisfied that the device is
present (the value returned is not currently used, but future plans dictate you should return the
amount of space in the device’s register bank). A probe routine may use the function ‘‘badaddr’’ to
see if certain other addresses are accessible on the UNIBUS (without generating a machine check), or
look at the contents of locations where certain registers should be. If the registers contents are not
acceptable or the addresses don’t respond, the probe routine can return 0 and the device will not be
considered to be there.

One other thing to note is that the action of different VAXen when illegal addresses are accessed on
the UNIBUS may differ. Some of the machines may generate machine checks and some may cause
UNIBUS errors. Such considerations are handled by the configuration program and the driver writer
need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if probing is diffi-
cult or impossible. Such a routine would include statements of the form:

br = 0x15;
cvec = 0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vector 0200 on the
UNIBUS. The current UDA-50 driver does something similar to this because the device is so diffi-
cult to force an interrupt on that it hardly seems worthwhile.

ud_slave
This routine is called with a uba_device structure (yet to be described) and the address of the device
controller. It should determine whether a particular slave device of a controller is present, returning 1
if it is and 0 if it is not. As an example here is the slave routine for up.c.

July 27, 1983

Building Systems With Config - 19 - Adding New Devices

upslave(ui, reg)
struct uba_device *ui;
caddr_t reg;

{
register struct updevice *upaddr = (struct updevice *)reg;

upaddr->upcs1 = 0; /* conservative */
upaddr->upcs2 = ui->ui_slave;
if (upaddr->upcs2&UPCS2_NED) {

upaddr->upcs1 = UP_DCLR|UP_GO;
return (0);

}
return (1);

}

Here the code fetches the slave (disk unit) number from the ui_slave field of the uba_device structure,
and sees if the controller responds that that is a non-existent driver (NED). If the drive a drive clear
is issued to clean the state of the controller, and 0 is returned indicating that the slave is not there.
Otherwise a 1 is returned.

ud_attach
The attach routine is called after the autoconfigure code and the driver concur that a peripheral exists
attached to a controller. This is the routine where internal driver state about the peripheral can be ini-
tialized. Here is the attach routine from the up.c driver:

upattach(ui)
register struct uba_device *ui;

{
register struct updevice *upaddr;

if (upwstart == 0) {
timeout(upwatch, (caddr_t)0, hz);
upwstart++;

}
if (ui->ui_dk >= 0)

dk_mspw[ui->ui_dk] = .0000020345;
upip[ui->ui_ctlr][ui->ui_slave] = ui;
up_softc[ui->ui_ctlr].sc_ndrive++;
ui->ui_type = upmaptype(ui);

}

The attach routine here performs a number of functions. The first time any drive is attached to the
controller it starts the timeout routine which watches the disk drives to make sure that interrupts
aren’t lost. It also initializes, for devices which have been assigned iostat numbers (when ui->ui_dk
>= 0), the transfer rate of the device in the array dk_mspw, the fraction of a second it takes to transfer
16 bit word. It then initializes an inverting pointer in the array upip which will be used later to deter-
mine, for a particular up controller and slave number, the corresponding uba_device. It increments
the count of the number of devices on this controller, so that search commands can later be avoided if
the count is exactly 1. It then attempts to decipher the actual type of drive attached to the controller
in a controller-specific way. On the EMULEX SC-21 it may ask for the number of tracks on the
device and use this to decide what the drive type is. The drive type is used to setup disk partition
mapping tables and other device specific information.

ud_dgo
Is the routine which is called by the UNIBUS resource management routines when an operation is
ready to be started (because the required resources have been allocated). The routine in up.c is:

July 27, 1983

Building Systems With Config - 20 - Adding New Devices

updgo(um)
struct uba_ctlr *um;

{
register struct updevice *upaddr = (struct updevice *)um->um_addr;

upaddr->upba = um->um_ubinfo;
upaddr->upcs1 = um->um_cmd|((um->um_ubinfo>>8)&0x300);

}

This routine uses the field um_ubinfo of the uba_ctlr structure which is where the UNIBUS routines
store the UNIBUS map allocation information. In particluar, the low 18 bits of this word give the
UNIBUS address assigned to the transfer. The assignment to upba in the go routine places the low
16 bits of the UNIBUS address in the disk UNIBUS address register. The next assignment places the
disk operation command and the extended (high 2) address bits in the device control-status register,
starting the i/o operation. The field um_cmd was initialized with the command to be stuffed here in
the driver code itself before the call to the ubago routine which eventually resulted in the call to
updgo.

ud_addr
Are the conventional addresses for the device control registers in UNIBUS space. This information
is used by the system to look for instances of the device supported by the driver. When the system
probes for the device it first checks for a control-status register located at the address indicated in the
configuration file (if supplied), then uses the list of conventional addresses pointed to be ud_addr.

ud_dname
Is the name of a device supported by this controller; thus the disks on a SC-21 controller are called
up0, up1, etc. That is because this field contains up.

ud_dinfo
Is an array of back pointers to the uba_device structures for each device attached to the controller.
Each driver defines a set of controllers and a set of devices. The device address space is always one-
dimensional, so that the presence of extra controllers may be masked away (e.g. by pattern matching)
to take advantage of hardware redundancy. This field is filled in by the configuration program, and
used by the driver.

ud_mname
The name of a controller, e.g. sc for the up.c driver. The first SC-21 is called sc0, etc.

ud_minfo
The backpointer array to the structures for the controllers.

ud_xclu
If non-zero specifies that the controller requires exclusive use of the UNIBUS when it is running.
This is non-zero currently only for the RK611 controller for the RK07 disks to map around a hard-
ware problem. It could also be used if 6250bpi tape drives are to be used on the UNIBUS to insure
that they get the bandwidth that they need (basically the whole bus).

uba_ctlr structure

One of these structures exists per-controller. The fields link the controller to its UNIBUS adapter and
contain the state information about the devices on the controller. The fields are:

um_driver
A pointer to the struct uba_device for this driver, which has fields as defined above.

um_ctlr
The controller number for this controller, e.g. the 0 in sc0.

um_alive
Set to 1 if the controller is considered alive; currently, always set for any structure encountered dur-
ing normal operation. That is, the driver will have a handle on a uba_ctlr structure only if the config-
uration routines set this field to a 1 and entered it into the driver tables.

July 27, 1983

Building Systems With Config - 21 - Adding New Devices

um_intr
The interrupt vector routines for this device. These are generated by config and this field is initialized
in the ioconf.c file.

um_hd
A back-pointer to the UNIBUS adapter to which this controller is attached.

um_cmd
A place for the driver to store the command which is to be given to the device before calling the rou-
tine ubago with the devices uba_device structure. This information is then retrieved when the device
go routine is called and stuffed in the device control status register to start the i/o operation.

um_ubinfo
Information about the UNIBUS resources allocated to the device. This is normally only used in
device driver go routine (as updgo above) and occasionally in exceptional condition handling such as
ECC correction.

um_tab
This buffer structure is a place where the driver hangs the device structures which are ready to trans-
fer. Each driver allocates a buf structure for each device (e.g. updtab in the up.c driver) for this pur-
pose. You can think of this structure as a device-control-block, and the buf structures linked to it as
the unit-control-blocks. The code for dealing with this structure is stylized; see the rk.c or up.c driver
for the details. If the ubago routine is to be used, the structure attached to this buf structure must be:

• A chain of buf structures for each waiting device on this controller.

• On each waiting buf structure another buf structure which is the one containing the parameters of
the i/o operation.

uba_device structure

One of these structures exist for each device attached to a UNIBUS controller. Devices which are not
attached to controllers or which perform no buffered data path DMA i/o may have only a device structure.
Thus dz and dh devices have only uba_device structures. The fields are:

ui_driver
A pointer to the struct uba_driver structure for this device type.

ui_unit
The unit number of this device, e.g. 0 in up0, or 1 in dh1.

ui_ctlr
The number of the controller on which this device is attached, or −1 if this device is not on a con-
troller.

ui_ubanum
The number of the UNIBUS on which this device is attached.

ui_slave
The slave number of this device on the controller which it is attached to, or −1 if the device is not a
slave. Thus a disk which was unit 2 on a SC-21 would have ui_slave 2; it might or might not be up2,
that depends on the system configuration specification.

ui_intr
The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at boot time.
The values of these fields are filled in by config to small code segments which it generates in the file
ubglue.s.

ui_addr
The control-status register address of this device.

ui_dk
The iostat number assigned to this device. Numbers are assigned to disks only, and are small positive
integers which index the various dk_* arrays in <sys/dk.h>.

July 27, 1983

Building Systems With Config - 22 - Adding New Devices

ui_flags
The optional ‘‘flags xxx’’ parameter from the configuration specification was copied to this field, to
be interpreted by the driver. If flags was not specified, then this field will contain a 0.

ui_alive
The device is really there. Presently set to 1 when a device is determined to be alive, and left 1.

ui_type
The device type, to be used by the driver internally.

ui_physaddr
The physical memory address of the device control-status register. This is used in the device dump
routines typically.

ui_mi
A struct uba_ctlr pointer to the controller (if any) on which this device resides.

ui_hd
A struct uba_hd pointer to the UNIBUS on which this device resides.

UNIBUS resource management routines

UNIBUS drivers are supported by a collection of utility routines which manage UNIBUS resources.
If a driver attempts to bypass the UNIBUS routines, other drivers may not operate properly. The major rou-
tines are: uballoc to allocate UNIBUS resources, ubarelse to release previously allocated resources, and
ubago to initiate DMA. When allocating UNIBUS resources you may request that you

NEEDBDP
if you need a buffered data path,

HAVEBDP
if you already have a buffered data path and just want new mapping registers (and access to the
UNIBUS), and

CANTWAIT
if you are calling (potentially) from interrupt level

If the presentation here does not answer all the questions you may have, consult the file /sys/vaxuba/uba.c

Autoconfiguration requirements

Basically all you have to do is write a ud_probe and a ud_attach routine for the controller. It suffices
to have a ud_probe routine which just initializes br and cvec, and a ud_attach routine which does nothing.
Making the device fully configurable requires, of course, more work, but is worth it if you expect the device
to be in common usage and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the necessary header files;
the ones included by vaxuba/ct.c are nearly minimal. Order is important here, don’t be surprised at unde-
fined structure complaints if you order the includes wrongly. Finally if you get the device configured in,
you can try bootstrapping and see if configuration messages print out about your device. It is a good idea to
have some messages in the probe routine so that you can see that you are getting called and what is going
on. If you do not get called, then you probably have the control-status register address wrong in your sys-
tem configuration. The autoconfigure code notices that the device doesn’t exist in this case and you will
never get called.

Assuming that your probe routine works and you manage to generate an interrupt, then you are basi-
cally back to where you would have been under older versions of UNIX. Just be sure to use the ui_ctlr
field of the uba_device structures to address the device; compiling in funny constants will make your driver
only work on the CPU type you have (780, 750, or 730).

Other bad things that might happen while you are setting up the configuration stuff:

• You get ‘‘nexus zero vector’’ errors from the system. This will happen if you cause a device to inter-
rupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels the interrupt and con-
fuses the processor. The best thing to do it to put a modest delay in the probe code between the

July 27, 1983

Building Systems With Config - 23 - Adding New Devices

instructions which should cause and interrupt and the clearing of the interrupt enable. (You should clear
interrupt enable before you leave the probe routine so the device doesn’t interrupt more and confuse the
system while it is configuring other devices.)

• The device refuses to interrupt or interrupts with a ‘‘zero vector’’. This typically indicates a problem
with the hardware or, for devices which emulate other devices, that the emulation is incomplete.
Devices may fail to present interrupt vectors because they hav e configuration switches set wrong, or
because they are being accessed in inappropriate ways. Incomplete emulation can cause ‘‘maintenance
mode’’ features to not work properly, and these features are often needed to force device interrupts.

6.4. Adding non-standard system facilities

This section considers the work needed to augment config’s data base files for non-standard system
facilities.

As far as config is concerned non-standard facilities may fall into two categories. Config understands
that certain files are used especially for kernel profiling. These files are indicated in the files files with a
profiling-routine keyword. For example, the current profiling subroutines are sequestered off in a separate
file with the following entry:

sys/subr_mcount.coptional profiling-routine

The profiling-routine keyword forces config to not compile the source file with the −pg option.

The second keyword which can be of use is the config-dependent keyword. This causes config to
compile the indicated module with the global configuration parameters. This allows certain modules, such
as machdep.c to size system data structures based on the maximum number of users configured for the sys-
tem.

July 27, 1983

Building Systems With Config Configuration File Grammar

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc (1) grammar used by config to parse
configuration files. Terminal symbols are shown all in upper case, literals are emboldened; optional clauses
are enclosed in brackets, ‘‘[’’ and ‘‘]’’; zero or more instantiations are denoted with ‘‘*’’.

Configuration ::= [Spec ;]*

Spec ::= Config_spec
| Device_spec
| trace
| /* lambda */

/* configuration specifications */

Config_spec ::= machine ID
| cpu ID
| options Opt_list
| ident ID
| System_spec
| timezone [−] NUMBER [dst [NUMBER]]
| timezone [−] FPNUMBER [dst [NUMBER]]
| maxusers NUMBER

/* system configuration specifications */

System_spec ::= config ID System_parameter [System_parameter]*

System_parameter ::= swap_spec | root_spec | dump_spec | arg_spec

swap_spec ::= swap [on] swap_dev [and swap_dev]*

swap_dev ::= dev_spec [size NUMBER]

root_spec ::= root [on] dev_spec

dump_spec ::= dumps [on] dev_spec

arg_spec ::= args [on] dev_spec

dev_spec ::= dev_name | major_minor

major_minor ::= major NUMBER minor NUMBER

dev_name ::= ID [NUMBER [ID]]

/* option specifications */

Opt_list ::= Option [, Option]*

Option ::= ID [= Opt_value]

Opt_value ::= ID | NUMBER

July 27, 1983

Building Systems With Config - 25 - Configuration File Grammar

/* device specifications */

Device_spec ::= device Dev_name Dev_info Int_spec
| master Dev_name Dev_info
| disk Dev_name Dev_info
| tape Dev_name Dev_info
| controller Dev_name Dev_info [Int_spec]
| pseudo-device Dev [NUMBER]

Dev_name ::= Dev NUMBER

Dev ::= uba | mba | ID

Dev_info ::= Con_info [Info]*

Con_info ::= at Dev NUMBER
| at nexus NUMBER

Info ::= csr NUMBER
| drive NUMBER
| slave NUMBER
| flags NUMBER

Int_spec ::= vector ID [ID]*
| priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID
One or more alphabetics, either upper or lower case, and underscore, ‘‘_’’.

NUMBER
Approximately the C language specification for an integer number. That is, a leading ‘‘0x’’ indicates
a hexadecimal value, a leading ‘‘0’’ indicates an octal value, otherwise the number is expected to be a
decimal value. Hexadecimal numbers may use either upper or lower case alphabetics.

FPNUMBER
A floating point number without exponent. That is a number of the form ‘‘nnn.ddd’’, where the frac-
tional component is optional.

In special instances a question mark, ‘‘?’’, can be substituted for a ‘‘NUMBER’’ token. This is used to
effect wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a ‘‘#’’ character at the beginning of the line; the remainder
of the line is discarded.

A specification is interpreted as a continuation of the previous line if the first character of the line is tab.

July 27, 1983

Building Systems With Config Device Defaulting Rules

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a ‘‘config’’ rule which does not fully specify the location of the root file sys-
tem, paging area(s), device for system dumps, and device for argument list processing it applies a set of
rules to define those values left unspecified. The following list of rules are used in defaulting system
devices.

1) If a root device is not specified, the swap specification must indicate a ‘‘generic’’ system is to be built.

2) If the root device does not specify a unit number, it defaults to unit 0.

3) If the root device does not include a partition specification, it defaults to the ‘‘a’’ partition.

4) If no swap area is specified, it defaults to the ‘‘b’’ partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to find out where
dumps are placed within the partition).

The following table summarizes the default partitions selected when a device specification is incom-
plete, e.g. ‘‘hp0’’.

Type Partition

root ‘‘a’’
swap ‘‘b’’
args ‘‘b’’
dumps ‘‘b’’

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a ‘‘primary’’ swap
area which is always used. The remaining partitions are then interleaved into the paging system at the time
a swapon(2) system call is made. This is normally done at boot time with a call to swapon(8) from the
/etc/rc file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for the
‘‘dumps’’ device supports this. The dump contains the contents of memory, but not the swap areas. Nor-
mally the dump device is a disk in which case the information is copied to a location near the back of the
partition. The dump is placed in the back of the partition because the primary swap and dump device are
commonly the same device and this allows the system to be rebooted without immediately overwriting the
saved information. When a dump has occurred, the system variable dumpsize is set to a non-zero value
indicating the size (in bytes) of the dump. The savecore (8) program then copies the information from the
dump partition to a file in a ‘‘crash’’ directory and also makes a copy of the system which was running at
the time of the crash (usually ‘‘/vmunix’’). The offset to the system dump is defined in the system variable
dumplo (a sector offset from the front of the dump partition). The savecore program operates by reading the
contents of dumplo, dumpdev, and dumpmagic from /dev/kmem, then comparing the value of dumpmagic
read from /dev/kmem to that located in corresponding location in the dump area of the dump partition. If a
match is found, savecore assumes a crash occurred and reads dumpsize from the dump area of the dump
partition. This value is then used in copying the system dump. Refer to savecore (8) for more information
about its operation.

The value dumplo is calculated to be

dumpdev-size − DUMPDEV

where dumpdev-size is the size of the disk partition where system dumps are to be placed, and DUMPDEV
is 10 Megabytes. If the disk partition is not large enough to hold a 10 Megabyte dump, dumplo is set to 0

July 27, 1983

Building Systems With Config - 27 - Device Defaulting Rules

(the front of the partition). For sites with more than 10 Megabytes of memory the definition of DUMPDEV
in /sys/vax/autoconf.c will have to be changed.

July 27, 1983

Building Systems With Config Sample Config Files

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for completeness.

#
ANSEL VAX (a picture perfect machine)
#
machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
maxusers 40

config vmunix root on hp0
config hpvmunix root on hp0 swap on hp0 and hp2
config genvmunix swap generic

controller mba0 at nexus ?
disk hp0 at mba? disk ?
disk hp1 at mba? disk ?
controller mba1 at nexus ?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller uba0 at nexus ?
controller tm0 at uba? csr 0172520 vector tmintr
tape te0 at tm0 drive 0
tape te1 at tm0 drive 1
device dh0 at uba? csr 0160020 vector dhrint dhxint
device dm0 at uba? csr 0170500 vector dmintr
device dh1 at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

July 27, 1983

Building Systems With Config - 29 - Sample Config Files

#
UCBVAX - Gateway to the world
#
machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
maxusers 32
options INET

config vmunix root on hp swap on hp and rk0 and rk1
config upvmunix root on up
config hkvmunix root on hk swap on rk0 and rk1

controller mba0 at nexus ?
controller uba0 at nexus ?
disk hp0 at mba? drive 0
disk hp1 at mba? drive 1
controller sc0 at uba? csr 0176700 vector upintr
disk up0 at sc0 drive 0
disk up1 at sc0 drive 1
controller hk0 at uba? csr 0177440 vector rkintr
disk rk0 at hk0 drive 0
disk rk1 at hk0 drive 1
pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device acc0 at uba? csr 0167600 vector accrint accxint
pseudo-device ether
device ec0 at uba? csr 0164330 vector ecrint eccollide ecxint
device il0 at uba? csr 0164000 vector ilrint ilcint

July 27, 1983

Building Systems With Config Data Structure Sizing Rules

APPENDIX D. VAX KERNEL DAT A STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum number of simul-
taneous users expected, while others are calculated at boot time based on the physical resources present;
e.g. memory. This appendix lists both sets of rules and also includes some hints on changing built-in limi-
tations on certain data structures.

Compile time rules

The file /sys/conf/param.c contains the definitions of almost all data structures sized at compile time.
This file is copied into the directory of each configured system to allow configuration-dependent rules and
values to be maintained. The rules implied by its contents are summarized below (here MAXUSERS refers
to the value defined in the configuration file in the ‘‘maxusers’’ rule).

nproc
The maximum number of processes which may be running at any time. It is defined to be 20 + 8 *
MAXUSERS and referred to in other calculations as NPROC.

ntext
The maximum number of active shared text segments. Defined as 24 + MAXUSERS + NETSLOP,
where NETSLOP is 20 when the Internet protocols are configured in the system and 0 otherwise.
The added size for supporting the network is to take into account the numerous server processes
which are likely to exist.

ninode
The maximum number of files in the file system which may be active at any time. This includes files
in use by users, as well as directory files being read or written by the system and files associated with
bound sockets in the UNIX ipc domain. This is defined as (NPROC + 16 + MAXUSERS) + 32.

nfile
The number of ‘‘file table’’ structures. One file table structure is used for each open, unshared, file
descriptor. Multiple file descriptors may reference a single file table entry when they are created
through a dup call, or as the result of a fork. This is defined to be

16 * (NPROC + 16 + MAXUSERS) / 10 + 32 + 2 * NETSLOP

where NETSLOP is defined as for ntext.

ncallout
The number of ‘‘callout’’ structures. One callout structure is used per internal system event handled
with a timeout. Timeouts are used for terminal delays, watchdog routines in device drivers, protocol
timeout processing, etc. This is defined as 16 + NPROC.

nclist
The number of ‘‘c-list’’ structures. C-list structures are used in terminal i/o. This is defined as 100 +
16 * MAXUSERS.

nmbclusters
The maximum number of pages which may be allocated by the network. This is defined as 256 (a
quarter megabyte of memory) in /sys/h/mbuf.h. In practice, the network rarely uses this much mem-
ory. It starts off by allocating 64 kilobytes of memory, then requesting more as required. This value
represents an upper bound.

nquota
The number of ‘‘quota’’ structures allocated. Quota structures are present only when disc quotas are
configured in the system. One quota structure is kept per user. This is defined to be (MAXUSERS *
9) / 7 + 3.

ndquot
The number of ‘‘dquot’’ structures allocated. Dquot structures are present only when disc quotas are
configured in the system. One dquot structure is required per user, per active file system quota. That

July 27, 1983

Building Systems With Config - 31 - Data Structure Sizing Rules

is, when a user manipulates a file on a file system on which quotas are enabled, the information
regarding the user’s quotas on that file system must be in-core. This information is cached, so that
not all information must be present in-core all the time. This is defined as (MAXUSERS *
NMOUNT) / 4 + NPROC, where NMOUNT is the maximum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the kernel’s address
space) are sized at compile time by the SYSPTSIZE definition in the file /sys/vax/param.h. This is defined
to be 20 + MAXUSERS pages of page tables. Its definition affects the size of many data structures allo-
cated at boot time because it constrains the amount of virtual memory which may be addressed by the run-
ning system. This is often the limiting factor in the size of the buffer cache.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer cache. Allocation is
done by swiping physical memory (and the associated virtual memory) immediately after the system has
been started up; look in the file /sys/vax/machdep.c. The amount of physical memory which may be allo-
cated to the buffer cache is constrained by the size of the system page tables, among other things. While
the system may calculate a large amount of memory to be allocated to the buffer cache, if the system page
table is too small to map this physical memory into the virtual address space of the system, only as much as
can be mapped will be used.

The buffer cache is comprised of a number of ‘‘buffer headers’’ and a pool of pages attached to these
headers. Buffer headers are divided into two categories: those used for swapping and paging, and those
used for normal file i/o. The system tries to allocate 10% of available physical memory for the buffer cache
(where available does not count that space occupied by the system’s text and data segments). If this results
in fewer than 16 pages of memory allocated, then 16 pages are allocated. This value is kept in the initial-
ized variable bufpages so that it may be patched in the binary image (to allow tuning without recompiling
the system). A sufficient number of file i/o buffer headers are then allocated to allow each to hold 2 pages
each, and half as many swap i/o buffer headers are then allocated. The number of swap i/o buffer headers is
constrained to be no more than 256.

System size limitations

As distributed, the sum of the virtual sizes of the core-resident processes is limited to 64M bytes.
The size of the text, and data segments of a single process are currently limited to 6M bytes each, and the
stack segment size is limited to 512K bytes as a soft, user-changeable limit, and may be increased to 6M
with the setrlimit (2) system call. If these are insufficient, they can be increased by changing the constants
MAXTSIZ, MAXDSIZ and MAXSSIZ in the file /sys/vax/vmparam.h, while changing the definitions in
/sys/h/dmap.h and /sys/h/text.h. You must be careful in doing this that you have adequate paging space. As
normally configured , the system has only 16M bytes per paging area. The best way to get more space is to
provide multiple, thereby interleaved, paging areas.

To increase the amount of resident virtual space possible, you can alter the constant USRPTSIZE (in
/sys/vax/vmparam.h). To allow 128 megabytes of resident virtual space one would change the 8 to a 16.

Because the file system block numbers are stored in page table pg_blkno entries, the maximum size
of a file system is limited to 2ˆ19 1024 byte blocks. Thus no file system can be larger than 512M bytes.

The count of mountable file systems is limited to 15. This should be sufficient. If you have many
disks it makes sense to make some of them single file systems, and the paging areas don’t count in this
total. To increase this it will be necessary to change the core-map /sys/h/cmap.h since there is a 4 bit field
used here. The size of the core-map will then expand to 16 bytes per 1024 byte page. (Don’t forget to
change MSWAPX and NMOUNT in /sys/h/param.h also.)

The maximum value NOFILE (open files per process limit) can be raised to is 30 because of a bit
field in the page table entry in /sys/machine/pte.h.

July 27, 1983

